from easydict import EasyDict ant_ddpg_config = dict( exp_name='ant_ddpg_seed0', env=dict( env_id='Ant-v3', env_wrapper='mujoco_default', norm_obs=dict(use_norm=False, ), norm_reward=dict(use_norm=False, ), collector_env_num=1, evaluator_env_num=8, n_evaluator_episode=8, stop_value=6000, manager=dict(shared_memory=False, ), # The path to save the game replay # replay_path='./ant_ddpg_seed0/video', ), policy=dict( cuda=True, load_path="./ant_ddpg_seed0/ckpt/ckpt_best.pth.tar", random_collect_size=25000, model=dict( obs_shape=111, action_shape=8, twin_critic=False, actor_head_hidden_size=256, critic_head_hidden_size=256, action_space='regression', ), learn=dict( update_per_collect=1, batch_size=256, learning_rate_actor=1e-3, learning_rate_critic=1e-3, ignore_done=False, target_theta=0.005, discount_factor=0.99, # discount_factor: 0.97-0.99 actor_update_freq=1, noise=False, ), collect=dict( n_sample=1, unroll_len=1, noise_sigma=0.1, ), other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ), ) ) ant_ddpg_config = EasyDict(ant_ddpg_config) main_config = ant_ddpg_config ant_ddpg_create_config = dict( env=dict( type='mujoco', import_names=['dizoo.mujoco.envs.mujoco_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='ddpg', import_names=['ding.policy.ddpg'], ), replay_buffer=dict(type='naive', ), ) ant_ddpg_create_config = EasyDict(ant_ddpg_create_config) create_config = ant_ddpg_create_config if __name__ == "__main__": # or you can enter `ding -m serial -c ant_ddpg_config.py -s 0 --env-step 1e7` from ding.entry import serial_pipeline serial_pipeline((main_config, create_config), seed=0)