from easydict import EasyDict ant_trex_ppo_config = dict( exp_name='ant_trex_onppo_seed0', env=dict( manager=dict(shared_memory=True, reset_inplace=True), env_id='Ant-v3', norm_obs=dict(use_norm=False, ), norm_reward=dict(use_norm=False, ), collector_env_num=8, evaluator_env_num=10, n_evaluator_episode=10, stop_value=6000, ), reward_model=dict( type='trex', min_snippet_length=10, max_snippet_length=100, checkpoint_min=100, checkpoint_max=900, checkpoint_step=100, learning_rate=1e-5, update_per_collect=1, # Users should add their own model path here. Model path should lead to a model. # Absolute path is recommended. # In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. expert_model_path='model_path_placeholder', # Path where to store the reward model reward_model_path='abs_data_path + ./ant.params', continuous=True, # Path to the offline dataset # See ding/entry/application_entry_trex_collect_data.py to collect the data offline_data_path='abs_data_path', ), policy=dict( cuda=True, recompute_adv=True, model=dict( obs_shape=111, action_shape=8, action_space='continuous', ), action_space='continuous', learn=dict( epoch_per_collect=10, batch_size=64, learning_rate=3e-4, value_weight=0.5, entropy_weight=0.0, clip_ratio=0.2, adv_norm=True, value_norm=True, ), collect=dict( n_sample=2048, unroll_len=1, discount_factor=0.99, gae_lambda=0.97, ), eval=dict(evaluator=dict(eval_freq=5000, )), ), ) ant_trex_ppo_config = EasyDict(ant_trex_ppo_config) main_config = ant_trex_ppo_config ant_trex_ppo_create_config = dict( env=dict( type='mujoco', import_names=['dizoo.mujoco.envs.mujoco_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='ppo', ), ) ant_trex_ppo_create_config = EasyDict(ant_trex_ppo_create_config) create_config = ant_trex_ppo_create_config if __name__ == "__main__": # or you can enter `ding -m serial -c ant_trex_onppo_config.py -s 0` from ding.entry import serial_pipeline_trex_onpolicy serial_pipeline_trex_onpolicy((main_config, create_config), seed=0)