from easydict import EasyDict obs_shape = 17 act_shape = 6 walker2d_sqil_config = dict( exp_name='walker2d_sqil_sac_seed0', env=dict( env_id='Walker2d-v3', norm_obs=dict(use_norm=False, ), norm_reward=dict(use_norm=False, ), collector_env_num=1, evaluator_env_num=8, n_evaluator_episode=8, stop_value=6000, ), policy=dict( cuda=True, random_collect_size=25000, expert_random_collect_size=10000, model=dict( obs_shape=obs_shape, action_shape=act_shape, twin_critic=True, action_space='reparameterization', actor_head_hidden_size=256, critic_head_hidden_size=256, ), nstep=1, discount_factor=0.97, learn=dict( update_per_collect=1, batch_size=64, learning_rate_q=1e-3, learning_rate_policy=1e-3, learning_rate_alpha=3e-4, ignore_done=False, target_theta=0.005, discount_factor=0.99, alpha=0.2, reparameterization=True, auto_alpha=True, ), collect=dict( n_sample=16, unroll_len=1, model_path='model_path_placeholder', ), eval=dict(evaluator=dict(eval_freq=500, )), other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ), ), ) walker2d_sqil_config = EasyDict(walker2d_sqil_config) main_config = walker2d_sqil_config walker2d_sqil_create_config = dict( env=dict( type='mujoco', import_names=['dizoo.mujoco.envs.mujoco_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='sqil_sac', ), replay_buffer=dict(type='naive', ), ) walker2d_sqil_create_config = EasyDict(walker2d_sqil_create_config) create_config = walker2d_sqil_create_config if __name__ == "__main__": # or you can enter `ding -m serial_sqil -c walker2d_sqil_sac_config.py -s 0` # then input the config you used to generate your expert model in the path mentioned above # e.g. walker2d_sac_config.py from ding.entry import serial_pipeline_sqil from dizoo.mujoco.config.walker2d_sac_config import walker2d_sac_config, walker2d_sac_create_config expert_main_config = walker2d_sac_config expert_create_config = walker2d_sac_create_config serial_pipeline_sqil( [main_config, create_config], [expert_main_config, expert_create_config], max_env_step=5000000, seed=0, )