from easydict import EasyDict walker2d_td3_config = dict( exp_name='walker2d_td3_seed0', env=dict( env_id='Walker2d-v3', norm_obs=dict(use_norm=False, ), norm_reward=dict(use_norm=False, ), collector_env_num=1, evaluator_env_num=8, n_evaluator_episode=8, stop_value=6000, ), policy=dict( cuda=True, random_collect_size=25000, model=dict( obs_shape=17, action_shape=6, twin_critic=True, actor_head_hidden_size=256, critic_head_hidden_size=256, action_space='regression', ), learn=dict( update_per_collect=1, batch_size=256, learning_rate_actor=1e-3, learning_rate_critic=1e-3, ignore_done=False, target_theta=0.005, discount_factor=0.99, actor_update_freq=2, noise=True, noise_sigma=0.2, noise_range=dict( min=-0.5, max=0.5, ), ), collect=dict( n_sample=1, unroll_len=1, noise_sigma=0.1, ), other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ), ) ) walker2d_td3_config = EasyDict(walker2d_td3_config) main_config = walker2d_td3_config walker2d_td3_create_config = dict( env=dict( type='mujoco', import_names=['dizoo.mujoco.envs.mujoco_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='td3', import_names=['ding.policy.td3'], ), replay_buffer=dict(type='naive', ), ) walker2d_td3_create_config = EasyDict(walker2d_td3_create_config) create_config = walker2d_td3_create_config if __name__ == "__main__": # or you can enter `ding -m serial -c walker2d_td3_config.py -s 0` from ding.entry import serial_pipeline serial_pipeline([main_config, create_config], seed=0)