from easydict import EasyDict ant_ddpg_default_config = dict( exp_name='multi_mujoco_ant_2x4_ddpg', env=dict( scenario='Ant-v2', agent_conf="2x4d", agent_obsk=2, add_agent_id=False, episode_limit=1000, collector_env_num=8, evaluator_env_num=8, n_evaluator_episode=8, stop_value=6000, ), policy=dict( cuda=True, random_collect_size=0, multi_agent=True, model=dict( agent_obs_shape=54, global_obs_shape=111, action_shape=4, action_space='regression', actor_head_hidden_size=256, critic_head_hidden_size=256, ), learn=dict( update_per_collect=10, batch_size=256, learning_rate_actor=1e-3, learning_rate_critic=1e-3, target_theta=0.005, discount_factor=0.99, ), collect=dict( n_sample=400, noise_sigma=0.1, ), eval=dict(evaluator=dict(eval_freq=500, )), other=dict(replay_buffer=dict(replay_buffer_size=100000, ), ), ), ) ant_ddpg_default_config = EasyDict(ant_ddpg_default_config) main_config = ant_ddpg_default_config ant_ddpg_default_create_config = dict( env=dict( type='mujoco_multi', import_names=['dizoo.multiagent_mujoco.envs.multi_mujoco_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='ddpg'), replay_buffer=dict(type='naive', ), ) ant_ddpg_default_create_config = EasyDict(ant_ddpg_default_create_config) create_config = ant_ddpg_default_create_config if __name__ == '__main__': # or you can enter `ding -m serial -c ant_maddpg_config.py -s 0` from ding.entry.serial_entry import serial_pipeline serial_pipeline((main_config, create_config), seed=0, max_env_step=int(1e7))