import gym import numpy as np from ditk import logging from ding.envs import ObsNormWrapper, RewardNormWrapper try: import pybulletgym # register PyBullet enviroments with open ai gym except ImportError: logging.warning("not found pybullet env, please install it, refer to https://github.com/benelot/pybullet-gym") def wrap_pybullet(env_id, norm_obs=True, norm_reward=True, only_info=False) -> gym.Env: r""" Overview: Wrap Pybullet Env to preprocess env step's return info, e.g. observation normalization, reward normalization, etc. Arguments: - env_id (:obj:`str`): Pybullet environment id, for example "HalfCheetah-v3" - norm_obs (:obj:`EasyDict`): Whether to normalize observation or not - norm_reward (:obj:`EasyDict`): Whether to normalize reward or not. For evaluator, environment's reward \ should not be normalized: Either ``norm_reward`` is None or ``norm_reward.use_norm`` is False can do this. Returns: - wrapped_env (:obj:`gym.Env`): The wrapped Pybullet environment """ if not only_info: env = gym.make(env_id) if norm_obs is not None and norm_obs.use_norm: env = ObsNormWrapper(env) if norm_reward is not None and norm_reward.use_norm: env = RewardNormWrapper(env, norm_reward.reward_discount) return env else: wrapper_info = '' if norm_obs is not None and norm_obs.use_norm: wrapper_info = ObsNormWrapper.__name__ + '\n' if norm_reward is not None and norm_reward.use_norm: wrapper_info = RewardNormWrapper.__name__ + '\n' return wrapper_info