from easydict import EasyDict from ding.entry import serial_pipeline_onpolicy slime_volley_ppo_config = dict( exp_name='slime_volley_ppo_seed0', env=dict( collector_env_num=8, evaluator_env_num=5, n_evaluator_episode=5, agent_vs_agent=False, # vs bot stop_value=5, # 5 times per episode env_id="SlimeVolley-v0", ), policy=dict( cuda=True, action_space='discrete', model=dict( obs_shape=12, action_shape=6, action_space='discrete', encoder_hidden_size_list=[64, 64], critic_head_hidden_size=64, actor_head_hidden_size=64, share_encoder=False, # It is not wise to share encoder in low-dimension observation. ), learn=dict( epoch_per_collect=5, batch_size=64, learning_rate=3e-4, entropy_weight=0.0, # [0.01, 0.0] ), collect=dict( n_sample=4096, discount_factor=0.99, gae_lambda=0.95, ), ), ) slime_volley_ppo_config = EasyDict(slime_volley_ppo_config) main_config = slime_volley_ppo_config slime_volley_ppo_create_config = dict( env=dict( type='slime_volley', import_names=['dizoo.slime_volley.envs.slime_volley_env'], ), env_manager=dict(type='subprocess'), # if you want to save replay, it must use base policy=dict(type='ppo'), ) slime_volley_ppo_create_config = EasyDict(slime_volley_ppo_create_config) create_config = slime_volley_ppo_create_config if __name__ == "__main__": serial_pipeline_onpolicy([main_config, create_config], seed=0)