import pytest import torch from easydict import EasyDict from lzero.policy import inverse_scalar_transform class MuZeroModelFake(torch.nn.Module): """ Overview: Fake MuZero model just for test EfficientZeroMCTSPtree. Interfaces: __init__, initial_inference, recurrent_inference """ def __init__(self, action_num): super().__init__() self.action_num = action_num def initial_inference(self, observation): encoded_state = observation batch_size = encoded_state.shape[0] value = torch.zeros(size=(batch_size, 601)) value_prefix = [0. for _ in range(batch_size)] # policy_logits = torch.zeros(size=(batch_size, self.action_num)) policy_logits = 0.1 * torch.ones(size=(batch_size, self.action_num)) latent_state = torch.zeros(size=(batch_size, 12, 3, 3)) reward_hidden_state_state = (torch.zeros(size=(1, batch_size, 16)), torch.zeros(size=(1, batch_size, 16))) output = { 'value': value, 'value_prefix': value_prefix, 'policy_logits': policy_logits, 'latent_state': latent_state, 'reward_hidden_state': reward_hidden_state_state } return EasyDict(output) def recurrent_inference(self, hidden_states, reward_hidden_states, actions): batch_size = hidden_states.shape[0] latent_state = torch.zeros(size=(batch_size, 12, 3, 3)) reward_hidden_state_state = (torch.zeros(size=(1, batch_size, 16)), torch.zeros(size=(1, batch_size, 16))) value = torch.zeros(size=(batch_size, 601)) value_prefix = torch.zeros(size=(batch_size, 601)) policy_logits = 0.1 * torch.ones(size=(batch_size, self.action_num)) # policy_logits = torch.zeros(size=(batch_size, self.action_num)) output = { 'value': value, 'value_prefix': value_prefix, 'policy_logits': policy_logits, 'latent_state': latent_state, 'reward_hidden_state': reward_hidden_state_state } return EasyDict(output) @pytest.mark.unittest def test_mcts(): import numpy as np from lzero.mcts.tree_search.mcts_ctree_sampled import SampledEfficientZeroMCTSCtree as MCTSCtree policy_config = EasyDict( dict( lstm_horizon_len=5, num_of_sampled_actions=6, num_simulations=100, batch_size=5, pb_c_base=1, pb_c_init=1, discount_factor=0.9, root_dirichlet_alpha=0.3, root_noise_weight=0.2, dirichlet_alpha=0.3, exploration_fraction=1, device='cpu', value_delta_max=0, model=dict( continuous_action_space=True, support_scale=300, action_space_size=2, categorical_distribution=True, ), ) ) batch_size = env_nums = policy_config.batch_size model = MuZeroModelFake(action_num=policy_config.model.action_space_size * 2) stack_obs = torch.zeros( size=( batch_size, policy_config.model.action_space_size * 2, ), dtype=torch.float ) network_output = model.initial_inference(stack_obs.float()) latent_state_roots = network_output['latent_state'] reward_hidden_state_state = network_output['reward_hidden_state'] pred_values_pool = network_output['value'] value_prefix_pool = network_output['value_prefix'] policy_logits_pool = network_output['policy_logits'] # network output process pred_values_pool = inverse_scalar_transform(pred_values_pool, policy_config.model.support_scale).detach().cpu().numpy() latent_state_roots = latent_state_roots.detach().cpu().numpy() reward_hidden_state_state = ( reward_hidden_state_state[0].detach().cpu().numpy(), reward_hidden_state_state[1].detach().cpu().numpy() ) policy_logits_pool = policy_logits_pool.detach().cpu().numpy().tolist() legal_actions_list = [[-1 for i in range(5)] for _ in range(env_nums)] roots = MCTSCtree.roots( env_nums, legal_actions_list, policy_config.model.action_space_size, policy_config.num_of_sampled_actions, continuous_action_space=True ) noises = [ np.random.dirichlet([policy_config.root_dirichlet_alpha] * policy_config.num_of_sampled_actions ).astype(np.float32).tolist() for _ in range(env_nums) ] to_play_batch = [int(np.random.randint(1, 2, 1)) for _ in range(env_nums)] roots.prepare(policy_config.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play_batch) MCTSCtree(policy_config).search(roots, model, latent_state_roots, reward_hidden_state_state, to_play_batch) roots_distributions = roots.get_distributions() assert np.array(roots_distributions).shape == (batch_size, policy_config.num_of_sampled_actions)