from collections import namedtuple from typing import Optional, Any, List, Dict import numpy as np from ding.envs import BaseEnvManager from ding.torch_utils import to_ndarray from ding.utils import build_logger, EasyTimer, SERIAL_COLLECTOR_REGISTRY, one_time_warning, get_rank, get_world_size, \ broadcast_object_list, allreduce_data from ding.worker.collector.base_serial_collector import ISerialCollector, CachePool, TrajBuffer, INF, \ to_tensor_transitions @SERIAL_COLLECTOR_REGISTRY.register('episode_alphazero') class AlphaZeroCollector(ISerialCollector): """ Overview: AlphaZero collector (n_episode). Interfaces: __init__, reset, reset_env, reset_policy, collect, close Property: envstep """ # TO be compatible with ISerialCollector config = dict() def __init__( self, collect_print_freq: int = 100, env: BaseEnvManager = None, policy: namedtuple = None, tb_logger: 'SummaryWriter' = None, # noqa exp_name: Optional[str] = 'default_experiment', instance_name: Optional[str] = 'collector', env_config=None, ) -> None: """ Overview: Init the AlphaZero collector according to input arguments. Arguments: - collect_print_freq (:obj:`int`): collect_print_frequency in terms of training_steps. - env (:obj:`BaseEnvManager`): The env for the collection, the BaseEnvManager object or \ its derivatives are supported. - policy (:obj:`Policy`): The policy to be collected. - tb_logger (:obj:`SummaryWriter`): Logger, defaultly set as 'SummaryWriter' for model summary. - instance_name (:obj:`Optional[str]`): Name of this instance. - exp_name (:obj:`str`): Experiment name, which is used to indicate output directory. - env_config: Config of environment """ self._exp_name = exp_name self._instance_name = instance_name self._collect_print_freq = collect_print_freq self._timer = EasyTimer() self._end_flag = False self._env_config = env_config self._rank = get_rank() self._world_size = get_world_size() if self._rank == 0: if tb_logger is not None: self._logger, _ = build_logger( path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name, need_tb=False ) self._tb_logger = tb_logger else: self._logger, self._tb_logger = build_logger( path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name ) else: self._logger, _ = build_logger( path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name, need_tb=False ) self._tb_logger = None self.reset(policy, env) def reset_env(self, _env: Optional[BaseEnvManager] = None) -> None: """ Overview: Reset the environment. If _env is None, reset the old environment. If _env is not None, replace the old environment in the collector with the new passed \ in environment and launch. Arguments: - env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \ env_manager(BaseEnvManager) """ if _env is not None: self._env = _env self._env.launch() self._env_num = self._env.env_num else: self._env.reset() def reset_policy(self, _policy: Optional[namedtuple] = None) -> None: """ Overview: Reset the policy. If _policy is None, reset the old policy. If _policy is not None, replace the old policy in the collector with the new passed in policy. Arguments: - policy (:obj:`Optional[namedtuple]`): the api namedtuple of collect_mode policy """ assert hasattr(self, '_env'), "please set env first" if _policy is not None: self._policy = _policy self._default_n_episode = _policy.get_attribute('cfg').get('n_episode', None) self._on_policy = _policy.get_attribute('cfg').on_policy self._traj_len = INF self._logger.debug( 'Set default n_episode mode(n_episode({}), env_num({}), traj_len({}))'.format( self._default_n_episode, self._env_num, self._traj_len ) ) self._policy.reset() def reset(self, _policy: Optional[namedtuple] = None, _env: Optional[BaseEnvManager] = None) -> None: """ Overview: Reset the environment and policy. If _env is None, reset the old environment. If _env is not None, replace the old environment in the collector with the new passed \ in environment and launch. If _policy is None, reset the old policy. If _policy is not None, replace the old policy in the collector with the new passed in policy. Arguments: - policy (:obj:`Optional[namedtuple]`): the api namedtuple of collect_mode policy - env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \ env_manager(BaseEnvManager) """ if _env is not None: self.reset_env(_env) if _policy is not None: self.reset_policy(_policy) self._obs_pool = CachePool('obs', self._env_num, deepcopy=False) self._policy_output_pool = CachePool('policy_output', self._env_num) # _traj_buffer is {env_id: TrajBuffer}, is used to store traj_len pieces of transitions self._traj_buffer = {env_id: TrajBuffer(maxlen=self._traj_len) for env_id in range(self._env_num)} self._env_info = {env_id: {'time': 0., 'step': 0} for env_id in range(self._env_num)} self._episode_info = [] self._total_envstep_count = 0 self._total_episode_count = 0 self._total_duration = 0 self._last_train_iter = 0 self._end_flag = False def _reset_stat(self, env_id: int) -> None: """ Overview: Reset the collector's state. Including reset the traj_buffer, obs_pool, policy_output_pool\ and env_info. Reset these states according to env_id. You can refer to base_serial_collector\ to get more messages. Arguments: - env_id (:obj:`int`): the id where we need to reset the collector's state """ self._traj_buffer[env_id].clear() self._obs_pool.reset(env_id) self._policy_output_pool.reset(env_id) self._env_info[env_id] = {'time': 0., 'step': 0} def close(self) -> None: """ Overview: Close the collector. If end_flag is False, close the environment, flush the tb_logger\ and close the tb_logger. """ if self._end_flag: return self._end_flag = True self._env.close() if self._tb_logger: self._tb_logger.flush() self._tb_logger.close() def collect(self, n_episode: Optional[int] = None, train_iter: int = 0, policy_kwargs: Optional[dict] = None) -> List[Any]: """ Overview: Collect `n_episode` data with policy_kwargs, which is already trained `train_iter` iterations Arguments: - n_episode (:obj:`int`): the number of collecting data episode - train_iter (:obj:`int`): the number of training iteration - policy_kwargs (:obj:`dict`): the keyword args for policy forward Returns: - return_data (:obj:`List`): A list containing collected episodes. """ if n_episode is None: if self._default_n_episode is None: raise RuntimeError("Please specify collect n_episode") else: n_episode = self._default_n_episode assert n_episode >= self._env_num, "Please make sure n_episode >= env_num{}/{}".format(n_episode, self._env_num) if policy_kwargs is None: policy_kwargs = {} temperature = policy_kwargs['temperature'] collected_episode = 0 collected_step = 0 return_data = [] ready_env_id = set() remain_episode = n_episode while True: with self._timer: # Get current env obs. obs = self._env.ready_obs new_available_env_id = set(obs.keys()).difference(ready_env_id) ready_env_id = ready_env_id.union(set(list(new_available_env_id)[:remain_episode])) remain_episode -= min(len(new_available_env_id), remain_episode) obs_ = {env_id: obs[env_id] for env_id in ready_env_id} # Policy forward. self._obs_pool.update(obs_) # ============================================================== # policy forward # ============================================================== policy_output = self._policy.forward(obs_, temperature) self._policy_output_pool.update(policy_output) # Interact with env. actions = {env_id: output['action'] for env_id, output in policy_output.items()} actions = to_ndarray(actions) # ============================================================== # Interact with env. # ============================================================== timesteps = self._env.step(actions) interaction_duration = self._timer.value / len(timesteps) for env_id, timestep in timesteps.items(): with self._timer: if timestep.info.get('abnormal', False): # If there is an abnormal timestep, reset all the related variables(including this env). # suppose there is no reset param, just reset this env self._env.reset({env_id: None}) self._policy.reset([env_id]) self._reset_stat(env_id) self._logger.info('Env{} returns a abnormal step, its info is {}'.format(env_id, timestep.info)) continue transition = self._policy.process_transition( self._obs_pool[env_id], self._policy_output_pool[env_id], timestep ) transition['collect_iter'] = train_iter self._traj_buffer[env_id].append(transition) self._env_info[env_id]['step'] += 1 collected_step += 1 # prepare data if timestep.done: transitions = to_tensor_transitions(self._traj_buffer[env_id]) # reward_shaping transitions = self.reward_shaping(transitions, timestep.info['eval_episode_return']) return_data.append(transitions) self._traj_buffer[env_id].clear() self._env_info[env_id]['time'] += self._timer.value + interaction_duration if timestep.done: self._total_episode_count += 1 # the eval_episode_return is calculated from Player 1's perspective reward = timestep.info['eval_episode_return'] info = { 'reward': reward, # only means player1 reward 'time': self._env_info[env_id]['time'], 'step': self._env_info[env_id]['step'], } collected_episode += 1 self._episode_info.append(info) self._policy.reset([env_id]) self._reset_stat(env_id) ready_env_id.remove(env_id) if collected_episode >= n_episode: break collected_duration = sum([d['time'] for d in self._episode_info]) # reduce data when enables DDP if self._world_size > 1: collected_step = allreduce_data(collected_step, 'sum') collected_episode = allreduce_data(collected_episode, 'sum') collected_duration = allreduce_data(collected_duration, 'sum') self._total_envstep_count += collected_step self._total_episode_count += collected_episode self._total_duration += collected_duration # log self._output_log(train_iter) return return_data @property def envstep(self) -> int: """ Overview: Print the total envstep count. Return: - envstep (:obj:`int`): the total envstep count """ return self._total_envstep_count def close(self) -> None: """ Overview: Close the collector. If end_flag is False, close the environment, flush the tb_logger\ and close the tb_logger. """ if self._end_flag: return self._end_flag = True self._env.close() if self._tb_logger: self._tb_logger.flush() self._tb_logger.close() def __del__(self) -> None: """ Overview: Execute the close command and close the collector. __del__ is automatically called to \ destroy the collector instance when the collector finishes its work """ self.close() def _output_log(self, train_iter: int) -> None: """ Overview: Print the output log information. You can refer to Docs/Best Practice/How to understand\ training generated folders/Serial mode/log/collector for more details. Arguments: - train_iter (:obj:`int`): the number of training iteration. """ if self._rank != 0: return if (train_iter - self._last_train_iter) >= self._collect_print_freq and len(self._episode_info) > 0: self._last_train_iter = train_iter episode_count = len(self._episode_info) envstep_count = sum([d['step'] for d in self._episode_info]) duration = sum([d['time'] for d in self._episode_info]) episode_reward = [d['reward'] for d in self._episode_info] self._total_duration += duration info = { 'episode_count': episode_count, 'envstep_count': envstep_count, 'avg_envstep_per_episode': envstep_count / episode_count, 'avg_envstep_per_sec': envstep_count / duration, 'avg_episode_per_sec': episode_count / duration, 'collect_time': duration, 'reward_mean': np.mean(episode_reward), 'reward_std': np.std(episode_reward), 'reward_max': np.max(episode_reward), 'reward_min': np.min(episode_reward), 'total_envstep_count': self._total_envstep_count, 'total_episode_count': self._total_episode_count, 'total_duration': self._total_duration, } self._episode_info.clear() self._logger.info("collect end:\n{}".format('\n'.join(['{}: {}'.format(k, v) for k, v in info.items()]))) for k, v in info.items(): if k in ['each_reward']: continue self._tb_logger.add_scalar('{}_iter/'.format(self._instance_name) + k, v, train_iter) if k in ['total_envstep_count']: continue self._tb_logger.add_scalar('{}_step/'.format(self._instance_name) + k, v, self._total_envstep_count) def reward_shaping(self, transitions, eval_episode_return): """ Overview: Shape the reward according to the player. Return: - transitions: data transitions. """ reward = transitions[-1]['reward'] to_play = transitions[-1]['obs']['to_play'] for t in transitions: if t['obs']['to_play'] == -1: # play_with_bot_mode # the eval_episode_return is calculated from Player 1's perspective t['reward'] = eval_episode_return else: # self_play_mode if t['obs']['to_play'] == to_play: t['reward'] = int(reward) else: t['reward'] = int(-reward) return transitions