""" # Example of DQN pipeline Use the pipeline on a single process: > python3 -u ding/example/dqn.py Use the pipeline on multiple processes: We surpose there are N processes (workers) = 1 learner + 1 evaluator + (N-2) collectors ## First Example —— Execute on one machine with multi processes. Execute 4 processes with 1 learner + 1 evaluator + 2 collectors Remember to keep them connected by mesh to ensure that they can exchange information with each other. > ditask --package . --main ding.example.dqn.main --parallel-workers 4 --topology mesh ## Second Example —— Execute on multiple machines. 1. Execute 1 learner + 1 evaluator on one machine. > ditask --package . --main ding.example.dqn.main --parallel-workers 2 --topology mesh --node-ids 0 --ports 50515 2. Execute 2 collectors on another machine. (Suppose the ip of the first machine is 127.0.0.1). Here we use `alone` topology instead of `mesh` because the collectors do not need communicate with each other. Remember the `node_ids` cannot be duplicated with the learner, evaluator processes. And remember to set the `ports` (should not conflict with others) and `attach_to` parameters. The value of the `attach_to` parameter should be obtained from the log of the process started earlier (e.g. 'NNG listen on tcp://10.0.0.4:50515'). > ditask --package . --main ding.example.dqn.main --parallel-workers 2 --topology alone --node-ids 2 \ --ports 50517 --attach-to tcp://10.0.0.4:50515,tcp://127.0.0.1:50516 3. You can repeat step 2 to start more collectors on other machines. """ import gym from ditk import logging from ding.data.model_loader import FileModelLoader from ding.data.storage_loader import FileStorageLoader from ding.model import DQN from ding.policy import DQNPolicy from ding.envs import DingEnvWrapper, BaseEnvManagerV2 from ding.data import DequeBuffer from ding.config import compile_config from ding.framework import task, ding_init from ding.framework.context import OnlineRLContext from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, \ eps_greedy_handler, CkptSaver, ContextExchanger, ModelExchanger, online_logger from ding.utils import set_pkg_seed from dizoo.classic_control.cartpole.config.cartpole_dqn_config import main_config, create_config def main(): logging.getLogger().setLevel(logging.INFO) cfg = compile_config(main_config, create_cfg=create_config, auto=True, save_cfg=task.router.node_id == 0) ding_init(cfg) with task.start(async_mode=False, ctx=OnlineRLContext()): collector_env = BaseEnvManagerV2( env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager ) evaluator_env = BaseEnvManagerV2( env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager ) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) model = DQN(**cfg.policy.model) buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) policy = DQNPolicy(cfg.policy, model=model) # Consider the case with multiple processes if task.router.is_active: # You can use labels to distinguish between workers with different roles, # here we use node_id to distinguish. if task.router.node_id == 0: task.add_role(task.role.LEARNER) elif task.router.node_id == 1: task.add_role(task.role.EVALUATOR) else: task.add_role(task.role.COLLECTOR) # Sync their context and model between each worker. task.use(ContextExchanger(skip_n_iter=1)) task.use(ModelExchanger(model)) # Here is the part of single process pipeline. task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) task.use(eps_greedy_handler(cfg)) task.use(StepCollector(cfg, policy.collect_mode, collector_env)) task.use(data_pusher(cfg, buffer_)) task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_)) task.use(online_logger(train_show_freq=10)) task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) task.run() if __name__ == "__main__": main()