from typing import Union, Dict, Optional from easydict import EasyDict import torch import torch.nn as nn from ding.utils import SequenceType, squeeze, MODEL_REGISTRY from ..common import RegressionHead, ReparameterizationHead, DiscreteHead, MultiHead, \ FCEncoder, ConvEncoder @MODEL_REGISTRY.register('discrete_maqac') class DiscreteMAQAC(nn.Module): """ Overview: The neural network and computation graph of algorithms related to discrete action Multi-Agent Q-value \ Actor-CritiC (MAQAC) model. The model is composed of actor and critic, where actor is a MLP network and \ critic is a MLP network. The actor network is used to predict the action probability distribution, and the \ critic network is used to predict the Q value of the state-action pair. Interfaces: ``__init__``, ``forward``, ``compute_actor``, ``compute_critic`` """ mode = ['compute_actor', 'compute_critic'] def __init__( self, agent_obs_shape: Union[int, SequenceType], global_obs_shape: Union[int, SequenceType], action_shape: Union[int, SequenceType], twin_critic: bool = False, actor_head_hidden_size: int = 64, actor_head_layer_num: int = 1, critic_head_hidden_size: int = 64, critic_head_layer_num: int = 1, activation: Optional[nn.Module] = nn.ReLU(), norm_type: Optional[str] = None, ) -> None: """ Overview: Initialize the DiscreteMAQAC Model according to arguments. Arguments: - agent_obs_shape (:obj:`Union[int, SequenceType]`): Agent's observation's space. - global_obs_shape (:obj:`Union[int, SequenceType]`): Global observation's space. - obs_shape (:obj:`Union[int, SequenceType]`): Observation's space. - action_shape (:obj:`Union[int, SequenceType]`): Action's space. - twin_critic (:obj:`bool`): Whether include twin critic. - actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``. - actor_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \ for actor's nn. - critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``. - critic_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \ for critic's nn. - activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after \ ``layer_fn``, if ``None`` then default set to ``nn.ReLU()`` - norm_type (:obj:`Optional[str]`): The type of normalization to use, see ``ding.torch_utils.fc_block`` \ for more details. """ super(DiscreteMAQAC, self).__init__() agent_obs_shape: int = squeeze(agent_obs_shape) action_shape: int = squeeze(action_shape) self.actor = nn.Sequential( nn.Linear(agent_obs_shape, actor_head_hidden_size), activation, DiscreteHead( actor_head_hidden_size, action_shape, actor_head_layer_num, activation=activation, norm_type=norm_type ) ) self.twin_critic = twin_critic if self.twin_critic: self.critic = nn.ModuleList() for _ in range(2): self.critic.append( nn.Sequential( nn.Linear(global_obs_shape, critic_head_hidden_size), activation, DiscreteHead( critic_head_hidden_size, action_shape, critic_head_layer_num, activation=activation, norm_type=norm_type ) ) ) else: self.critic = nn.Sequential( nn.Linear(global_obs_shape, critic_head_hidden_size), activation, DiscreteHead( critic_head_hidden_size, action_shape, critic_head_layer_num, activation=activation, norm_type=norm_type ) ) def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict: """ Overview: Use observation tensor to predict output, with ``compute_actor`` or ``compute_critic`` mode. Arguments: - inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys: - ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys: - ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \ with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \ N0 corresponds to ``agent_obs_shape``. - ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \ with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \ N1 corresponds to ``global_obs_shape``. - ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \ with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \ N2 corresponds to ``action_shape``. - mode (:obj:`str`): The forward mode, all the modes are defined in the beginning of this class. Returns: - output (:obj:`Dict[str, torch.Tensor]`): The output dict of DiscreteMAQAC forward computation graph, \ whose key-values vary in different forward modes. Examples: >>> B = 32 >>> agent_obs_shape = 216 >>> global_obs_shape = 264 >>> agent_num = 8 >>> action_shape = 14 >>> data = { >>> 'obs': { >>> 'agent_state': torch.randn(B, agent_num, agent_obs_shape), >>> 'global_state': torch.randn(B, agent_num, global_obs_shape), >>> 'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape)) >>> } >>> } >>> model = DiscreteMAQAC(agent_obs_shape, global_obs_shape, action_shape, twin_critic=True) >>> logit = model(data, mode='compute_actor')['logit'] >>> value = model(data, mode='compute_critic')['q_value'] """ assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode) return getattr(self, mode)(inputs) def compute_actor(self, inputs: Dict) -> Dict: """ Overview: Use observation tensor to predict action logits. Arguments: - inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys: - ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys: - ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \ with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \ N0 corresponds to ``agent_obs_shape``. - ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \ with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \ N1 corresponds to ``global_obs_shape``. - ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \ with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \ N2 corresponds to ``action_shape``. Returns: - output (:obj:`Dict[str, torch.Tensor]`): The output dict of DiscreteMAQAC forward computation graph, \ whose key-values vary in different forward modes. - logit (:obj:`torch.Tensor`): Action's output logit (real value range), whose shape is \ :math:`(B, A, N2)`, where N2 corresponds to ``action_shape``. - action_mask (:obj:`torch.Tensor`): Action mask tensor with same size as ``action_shape``. Examples: >>> B = 32 >>> agent_obs_shape = 216 >>> global_obs_shape = 264 >>> agent_num = 8 >>> action_shape = 14 >>> data = { >>> 'obs': { >>> 'agent_state': torch.randn(B, agent_num, agent_obs_shape), >>> 'global_state': torch.randn(B, agent_num, global_obs_shape), >>> 'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape)) >>> } >>> } >>> model = DiscreteMAQAC(agent_obs_shape, global_obs_shape, action_shape, twin_critic=True) >>> logit = model.compute_actor(data)['logit'] """ action_mask = inputs['obs']['action_mask'] x = self.actor(inputs['obs']['agent_state']) return {'logit': x['logit'], 'action_mask': action_mask} def compute_critic(self, inputs: Dict) -> Dict: """ Overview: use observation tensor to predict Q value. Arguments: - inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys: - ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys: - ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \ with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \ N0 corresponds to ``agent_obs_shape``. - ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \ with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \ N1 corresponds to ``global_obs_shape``. - ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \ with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \ N2 corresponds to ``action_shape``. Returns: - output (:obj:`Dict[str, torch.Tensor]`): The output dict of DiscreteMAQAC forward computation graph, \ whose key-values vary in different values of ``twin_critic``. - q_value (:obj:`list`): If ``twin_critic=True``, q_value should be 2 elements, each is the shape of \ :math:`(B, A, N2)`, where B is batch size and A is agent num. N2 corresponds to ``action_shape``. \ Otherwise, q_value should be ``torch.Tensor``. Examples: >>> B = 32 >>> agent_obs_shape = 216 >>> global_obs_shape = 264 >>> agent_num = 8 >>> action_shape = 14 >>> data = { >>> 'obs': { >>> 'agent_state': torch.randn(B, agent_num, agent_obs_shape), >>> 'global_state': torch.randn(B, agent_num, global_obs_shape), >>> 'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape)) >>> } >>> } >>> model = DiscreteMAQAC(agent_obs_shape, global_obs_shape, action_shape, twin_critic=True) >>> value = model.compute_critic(data)['q_value'] """ if self.twin_critic: x = [m(inputs['obs']['global_state'])['logit'] for m in self.critic] else: x = self.critic(inputs['obs']['global_state'])['logit'] return {'q_value': x} @MODEL_REGISTRY.register('continuous_maqac') class ContinuousMAQAC(nn.Module): """ Overview: The neural network and computation graph of algorithms related to continuous action Multi-Agent Q-value \ Actor-CritiC (MAQAC) model. The model is composed of actor and critic, where actor is a MLP network and \ critic is a MLP network. The actor network is used to predict the action probability distribution, and the \ critic network is used to predict the Q value of the state-action pair. Interfaces: ``__init__``, ``forward``, ``compute_actor``, ``compute_critic`` """ mode = ['compute_actor', 'compute_critic'] def __init__( self, agent_obs_shape: Union[int, SequenceType], global_obs_shape: Union[int, SequenceType], action_shape: Union[int, SequenceType, EasyDict], action_space: str, twin_critic: bool = False, actor_head_hidden_size: int = 64, actor_head_layer_num: int = 1, critic_head_hidden_size: int = 64, critic_head_layer_num: int = 1, activation: Optional[nn.Module] = nn.ReLU(), norm_type: Optional[str] = None, ) -> None: """ Overview: Initialize the QAC Model according to arguments. Arguments: - obs_shape (:obj:`Union[int, SequenceType]`): Observation's space. - action_shape (:obj:`Union[int, SequenceType, EasyDict]`): Action's space, such as 4, (3, ) - action_space (:obj:`str`): Whether choose ``regression`` or ``reparameterization``. - twin_critic (:obj:`bool`): Whether include twin critic. - actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``. - actor_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \ for actor's nn. - critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``. - critic_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \ for critic's nn. - activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after \ ``layer_fn``, if ``None`` then default set to ``nn.ReLU()`` - norm_type (:obj:`Optional[str]`): The type of normalization to use, see ``ding.torch_utils.fc_block`` \ for more details. """ super(ContinuousMAQAC, self).__init__() obs_shape: int = squeeze(agent_obs_shape) global_obs_shape: int = squeeze(global_obs_shape) action_shape = squeeze(action_shape) self.action_shape = action_shape self.action_space = action_space assert self.action_space in ['regression', 'reparameterization'], self.action_space if self.action_space == 'regression': # DDPG, TD3 self.actor = nn.Sequential( nn.Linear(obs_shape, actor_head_hidden_size), activation, RegressionHead( actor_head_hidden_size, action_shape, actor_head_layer_num, final_tanh=True, activation=activation, norm_type=norm_type ) ) else: # SAC self.actor = nn.Sequential( nn.Linear(obs_shape, actor_head_hidden_size), activation, ReparameterizationHead( actor_head_hidden_size, action_shape, actor_head_layer_num, sigma_type='conditioned', activation=activation, norm_type=norm_type ) ) self.twin_critic = twin_critic critic_input_size = global_obs_shape + action_shape if self.twin_critic: self.critic = nn.ModuleList() for _ in range(2): self.critic.append( nn.Sequential( nn.Linear(critic_input_size, critic_head_hidden_size), activation, RegressionHead( critic_head_hidden_size, 1, critic_head_layer_num, final_tanh=False, activation=activation, norm_type=norm_type ) ) ) else: self.critic = nn.Sequential( nn.Linear(critic_input_size, critic_head_hidden_size), activation, RegressionHead( critic_head_hidden_size, 1, critic_head_layer_num, final_tanh=False, activation=activation, norm_type=norm_type ) ) def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict: """ Overview: Use observation and action tensor to predict output in ``compute_actor`` or ``compute_critic`` mode. Arguments: - inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys: - ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys: - ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \ with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \ N0 corresponds to ``agent_obs_shape``. - ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \ with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \ N1 corresponds to ``global_obs_shape``. - ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \ with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \ N2 corresponds to ``action_shape``. - ``action`` (:obj:`torch.Tensor`): The action tensor data, \ with shape :math:`(B, A, N3)`, where B is batch size and A is agent num. \ N3 corresponds to ``action_shape``. - mode (:obj:`str`): Name of the forward mode. Returns: - outputs (:obj:`Dict`): Outputs of network forward, whose key-values will be different for different \ ``mode``, ``twin_critic``, ``action_space``. Examples: >>> B = 32 >>> agent_obs_shape = 216 >>> global_obs_shape = 264 >>> agent_num = 8 >>> action_shape = 14 >>> act_space = 'reparameterization' # regression >>> data = { >>> 'obs': { >>> 'agent_state': torch.randn(B, agent_num, agent_obs_shape), >>> 'global_state': torch.randn(B, agent_num, global_obs_shape), >>> 'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape)) >>> }, >>> 'action': torch.randn(B, agent_num, squeeze(action_shape)) >>> } >>> model = ContinuousMAQAC(agent_obs_shape, global_obs_shape, action_shape, act_space, twin_critic=False) >>> if action_space == 'regression': >>> action = model(data['obs'], mode='compute_actor')['action'] >>> elif action_space == 'reparameterization': >>> (mu, sigma) = model(data['obs'], mode='compute_actor')['logit'] >>> value = model(data, mode='compute_critic')['q_value'] """ assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode) return getattr(self, mode)(inputs) def compute_actor(self, inputs: Dict) -> Dict: """ Overview: Use observation tensor to predict action logits. Arguments: - inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys: - ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \ with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \ N0 corresponds to ``agent_obs_shape``. Returns: - outputs (:obj:`Dict`): Outputs of network forward. ReturnKeys (``action_space == 'regression'``): - action (:obj:`torch.Tensor`): Action tensor with same size as ``action_shape``. ReturnKeys (``action_space == 'reparameterization'``): - logit (:obj:`list`): 2 elements, each is the shape of :math:`(B, A, N3)`, where B is batch size and \ A is agent num. N3 corresponds to ``action_shape``. Examples: >>> B = 32 >>> agent_obs_shape = 216 >>> global_obs_shape = 264 >>> agent_num = 8 >>> action_shape = 14 >>> act_space = 'reparameterization' # 'regression' >>> data = { >>> 'agent_state': torch.randn(B, agent_num, agent_obs_shape), >>> } >>> model = ContinuousMAQAC(agent_obs_shape, global_obs_shape, action_shape, act_space, twin_critic=False) >>> if action_space == 'regression': >>> action = model.compute_actor(data)['action'] >>> elif action_space == 'reparameterization': >>> (mu, sigma) = model.compute_actor(data)['logit'] """ inputs = inputs['agent_state'] if self.action_space == 'regression': x = self.actor(inputs) return {'action': x['pred']} else: x = self.actor(inputs) return {'logit': [x['mu'], x['sigma']]} def compute_critic(self, inputs: Dict) -> Dict: """ Overview: Use observation tensor and action tensor to predict Q value. Arguments: - inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys: - ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys: - ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \ with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \ N0 corresponds to ``agent_obs_shape``. - ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \ with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \ N1 corresponds to ``global_obs_shape``. - ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \ with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \ N2 corresponds to ``action_shape``. - ``action`` (:obj:`torch.Tensor`): The action tensor data, \ with shape :math:`(B, A, N3)`, where B is batch size and A is agent num. \ N3 corresponds to ``action_shape``. Returns: - outputs (:obj:`Dict`): Outputs of network forward. ReturnKeys (``twin_critic=True``): - q_value (:obj:`list`): 2 elements, each is the shape of :math:`(B, A)`, where B is batch size and \ A is agent num. ReturnKeys (``twin_critic=False``): - q_value (:obj:`torch.Tensor`): :math:`(B, A)`, where B is batch size and A is agent num. Examples: >>> B = 32 >>> agent_obs_shape = 216 >>> global_obs_shape = 264 >>> agent_num = 8 >>> action_shape = 14 >>> act_space = 'reparameterization' # 'regression' >>> data = { >>> 'obs': { >>> 'agent_state': torch.randn(B, agent_num, agent_obs_shape), >>> 'global_state': torch.randn(B, agent_num, global_obs_shape), >>> 'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape)) >>> }, >>> 'action': torch.randn(B, agent_num, squeeze(action_shape)) >>> } >>> model = ContinuousMAQAC(agent_obs_shape, global_obs_shape, action_shape, act_space, twin_critic=False) >>> value = model.compute_critic(data)['q_value'] """ obs, action = inputs['obs']['global_state'], inputs['action'] if len(action.shape) == 1: # (B, ) -> (B, 1) action = action.unsqueeze(1) x = torch.cat([obs, action], dim=-1) if self.twin_critic: x = [m(x)['pred'] for m in self.critic] else: x = self.critic(x)['pred'] return {'q_value': x}