""" Referenced papar """ import torch from typing import Union beta_function_map = {} beta_function_map['uniform'] = lambda x: x # For beta functions, concavity corresponds to risk-averse and convexity to risk-seeking policies # For CPW, eta = 0.71 most closely match human subjects # this function is locally concave for small values of τ and becomes locally convex for larger values of τ def cpw(x: Union[torch.Tensor, float], eta: float = 0.71) -> Union[torch.Tensor, float]: return (x ** eta) / ((x ** eta + (1 - x) ** eta) ** (1 / eta)) beta_function_map['CPW'] = cpw # CVaR is risk-averse def CVaR(x: Union[torch.Tensor, float], eta: float = 0.71) -> Union[torch.Tensor, float]: assert eta <= 1.0 return x * eta beta_function_map['CVaR'] = CVaR # risk-averse (eta < 0) or risk-seeking (eta > 0) def Pow(x: Union[torch.Tensor, float], eta: float = 0.0) -> Union[torch.Tensor, float]: if eta >= 0: return x ** (1 / (1 + eta)) else: return 1 - (1 - x) ** (1 / 1 - eta) beta_function_map['Pow'] = Pow