from typing import Any, Tuple, Callable, Optional, List, Dict, Union from abc import ABC import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Categorical, Independent, Normal from ding.torch_utils import get_tensor_data, zeros_like from ding.rl_utils import create_noise_generator from ding.utils.data import default_collate class IModelWrapper(ABC): """ Overview: The basic interface class of model wrappers. Model wrapper is a wrapper class of torch.nn.Module model, which \ is used to add some extra operations for the wrapped model, such as hidden state maintain for RNN-base model, \ argmax action selection for discrete action space, etc. Interfaces: ``__init__``, ``__getattr__``, ``info``, ``reset``, ``forward``. """ def __init__(self, model: nn.Module) -> None: """ Overview: Initialize model and other necessary member variabls in the model wrapper. """ self._model = model def __getattr__(self, key: str) -> Any: """ Overview: Get original attrbutes of torch.nn.Module model, such as variables and methods defined in model. Arguments: - key (:obj:`str`): The string key to query. Returns: - ret (:obj:`Any`): The queried attribute. """ return getattr(self._model, key) def info(self, attr_name: str) -> str: """ Overview: Get some string information of the indicated ``attr_name``, which is used for debug wrappers. This method will recursively search for the indicated ``attr_name``. Arguments: - attr_name (:obj:`str`): The string key to query information. Returns: - info_string (:obj:`str`): The information string of the indicated ``attr_name``. """ if attr_name in dir(self): if isinstance(self._model, IModelWrapper): return '{} {}'.format(self.__class__.__name__, self._model.info(attr_name)) else: if attr_name in dir(self._model): return '{} {}'.format(self.__class__.__name__, self._model.__class__.__name__) else: return '{}'.format(self.__class__.__name__) else: if isinstance(self._model, IModelWrapper): return '{}'.format(self._model.info(attr_name)) else: return '{}'.format(self._model.__class__.__name__) def reset(self, data_id: List[int] = None, **kwargs) -> None: """ Overview Basic interface, reset some stateful varaibles in the model wrapper, such as hidden state of RNN. Here we do nothing and just implement this interface method. Other derived model wrappers can override this method to add some extra operations. Arguments: - data_id (:obj:`List[int]`): The data id list to reset. If None, reset all data. In practice, \ model wrappers often needs to maintain some stateful variables for each data trajectory, \ so we leave this ``data_id`` argument to reset the stateful variables of the indicated data. """ pass def forward(self, *args, **kwargs) -> Any: """ Overview: Basic interface, call the wrapped model's forward method. Other derived model wrappers can override this \ method to add some extra operations. """ return self._model.forward(*args, **kwargs) class BaseModelWrapper(IModelWrapper): """ Overview: Placeholder class for the model wrapper. This class is used to wrap the model without any extra operations, \ including a empty ``reset`` method and a ``forward`` method which directly call the wrapped model's forward. To keep the consistency of the model wrapper interface, we use this class to wrap the model without specific \ operations in the implementation of DI-engine's policy. """ pass class HiddenStateWrapper(IModelWrapper): """ Overview: Maintain the hidden state for RNN-base model. Each sample in a batch has its own state. Interfaces: ``__init__``, ``reset``, ``forward``. """ def __init__( self, model: Any, state_num: int, save_prev_state: bool = False, init_fn: Callable = lambda: None, ) -> None: """ Overview: Maintain the hidden state for RNN-base model. Each sample in a batch has its own state. \ Init the maintain state and state function; Then wrap the ``model.forward`` method with auto \ saved data ['prev_state'] input, and create the ``model.reset`` method. Arguments: - model(:obj:`Any`): Wrapped model class, should contain forward method. - state_num (:obj:`int`): Number of states to process. - save_prev_state (:obj:`bool`): Whether to output the prev state in output. - init_fn (:obj:`Callable`): The function which is used to init every hidden state when init and reset, \ default return None for hidden states. .. note:: 1. This helper must deal with an actual batch with some parts of samples, e.g: 6 samples of state_num 8. 2. This helper must deal with the single sample state reset. """ super().__init__(model) self._state_num = state_num # This is to maintain hidden states (when it comes to this wrapper, \ # map self._state into data['prev_value] and update next_state, store in self._state) self._state = {i: init_fn() for i in range(state_num)} self._save_prev_state = save_prev_state self._init_fn = init_fn def forward(self, data, **kwargs): state_id = kwargs.pop('data_id', None) valid_id = kwargs.pop('valid_id', None) # None, not used in any code in DI-engine data, state_info = self.before_forward(data, state_id) # update data['prev_state'] with self._state output = self._model.forward(data, **kwargs) h = output.pop('next_state', None) if h is not None: self.after_forward(h, state_info, valid_id) # this is to store the 'next hidden state' for each time step if self._save_prev_state: prev_state = get_tensor_data(data['prev_state']) # for compatibility, because of the incompatibility between None and torch.Tensor for i in range(len(prev_state)): if prev_state[i] is None: prev_state[i] = zeros_like(h[0]) output['prev_state'] = prev_state return output def reset(self, *args, **kwargs): state = kwargs.pop('state', None) state_id = kwargs.get('data_id', None) self.reset_state(state, state_id) if hasattr(self._model, 'reset'): return self._model.reset(*args, **kwargs) def reset_state(self, state: Optional[list] = None, state_id: Optional[list] = None) -> None: if state_id is None: # train: init all states state_id = [i for i in range(self._state_num)] if state is None: # collect: init state that are done state = [self._init_fn() for i in range(len(state_id))] assert len(state) == len(state_id), '{}/{}'.format(len(state), len(state_id)) for idx, s in zip(state_id, state): self._state[idx] = s def before_forward(self, data: dict, state_id: Optional[list]) -> Tuple[dict, dict]: if state_id is None: state_id = [i for i in range(self._state_num)] state_info = {idx: self._state[idx] for idx in state_id} data['prev_state'] = list(state_info.values()) return data, state_info def after_forward(self, h: Any, state_info: dict, valid_id: Optional[list] = None) -> None: assert len(h) == len(state_info), '{}/{}'.format(len(h), len(state_info)) for i, idx in enumerate(state_info.keys()): if valid_id is None: self._state[idx] = h[i] else: if idx in valid_id: self._state[idx] = h[i] class TransformerInputWrapper(IModelWrapper): def __init__(self, model: Any, seq_len: int, init_fn: Callable = lambda: None) -> None: """ Overview: Given N the length of the sequences received by a Transformer model, maintain the last N-1 input observations. In this way we can provide at each step all the observations needed by Transformer to compute its output. We need this because some methods such as 'collect' and 'evaluate' only provide the model 1 observation per step and don't have memory of past observations, but Transformer needs a sequence of N observations. The wrapper method ``forward`` will save the input observation in a FIFO memory of length N and the method ``reset`` will reset the memory. The empty memory spaces will be initialized with 'init_fn' or zero by calling the method ``reset_input``. Since different env can terminate at different steps, the method ``reset_memory_entry`` only initializes the memory of specific environments in the batch size. Arguments: - model (:obj:`Any`): Wrapped model class, should contain forward method. - seq_len (:obj:`int`): Number of past observations to remember. - init_fn (:obj:`Callable`): The function which is used to init every memory locations when init and reset. """ super().__init__(model) self.seq_len = seq_len self._init_fn = init_fn self.obs_memory = None # shape (N, bs, *obs_shape) self.init_obs = None # sample of observation used to initialize the memory self.bs = None self.memory_idx = [] # len bs, index of where to put the next element in the sequence for each batch def forward(self, input_obs: torch.Tensor, only_last_logit: bool = True, data_id: List = None, **kwargs) -> Dict[str, torch.Tensor]: """ Arguments: - input_obs (:obj:`torch.Tensor`): Input observation without sequence shape: ``(bs, *obs_shape)``. - only_last_logit (:obj:`bool`): if True 'logit' only contains the output corresponding to the current \ observation (shape: bs, embedding_dim), otherwise logit has shape (seq_len, bs, embedding_dim). - data_id (:obj:`List`): id of the envs that are currently running. Memory update and logits return has \ only effect for those environments. If `None` it is considered that all envs are running. Returns: - Dictionary containing the input_sequence 'input_seq' stored in memory and the transformer output 'logit'. """ if self.obs_memory is None: self.reset_input(torch.zeros_like(input_obs)) # init the memory with the size of the input observation if data_id is None: data_id = list(range(self.bs)) assert self.obs_memory.shape[0] == self.seq_len # implements a fifo queue, self.memory_idx is index where to put the last element for i, b in enumerate(data_id): if self.memory_idx[b] == self.seq_len: # roll back of 1 position along dim 1 (sequence dim) self.obs_memory[:, b] = torch.roll(self.obs_memory[:, b], -1, 0) self.obs_memory[self.memory_idx[b] - 1, b] = input_obs[i] if self.memory_idx[b] < self.seq_len: self.obs_memory[self.memory_idx[b], b] = input_obs[i] if self.memory_idx != self.seq_len: self.memory_idx[b] += 1 out = self._model.forward(self.obs_memory, **kwargs) out['input_seq'] = self.obs_memory if only_last_logit: # return only the logits for running environments out['logit'] = [out['logit'][self.memory_idx[b] - 1][b] for b in range(self.bs) if b in data_id] out['logit'] = default_collate(out['logit']) return out def reset_input(self, input_obs: torch.Tensor): """ Overview: Initialize the whole memory """ init_obs = torch.zeros_like(input_obs) self.init_obs = init_obs self.obs_memory = [] # List(bs, *obs_shape) for i in range(self.seq_len): self.obs_memory.append(init_obs.clone() if init_obs is not None else self._init_fn()) self.obs_memory = default_collate(self.obs_memory) # shape (N, bs, *obs_shape) self.bs = self.init_obs.shape[0] self.memory_idx = [0 for _ in range(self.bs)] # called before evaluation # called after each evaluation iteration for each done env # called after each collect iteration for each done env def reset(self, *args, **kwargs): state_id = kwargs.get('data_id', None) input_obs = kwargs.get('input_obs', None) if input_obs is not None: self.reset_input(input_obs) if state_id is not None: self.reset_memory_entry(state_id) if input_obs is None and state_id is None: self.obs_memory = None if hasattr(self._model, 'reset'): return self._model.reset(*args, **kwargs) def reset_memory_entry(self, state_id: Optional[list] = None) -> None: """ Overview: Reset specific batch of the memory, batch ids are specified in 'state_id' """ assert self.init_obs is not None, 'Call method "reset_memory" first' for _id in state_id: self.memory_idx[_id] = 0 self.obs_memory[:, _id] = self.init_obs[_id] # init the corresponding sequence with broadcasting class TransformerSegmentWrapper(IModelWrapper): def __init__(self, model: Any, seq_len: int) -> None: """ Overview: Given T the length of a trajectory and N the length of the sequences received by a Transformer model, split T in sequences of N elements and forward each sequence one by one. If T % N != 0, the last sequence will be zero-padded. Usually used during Transformer training phase. Arguments: - model (:obj:`Any`): Wrapped model class, should contain forward method. - seq_len (:obj:`int`): N, length of a sequence. """ super().__init__(model) self.seq_len = seq_len def forward(self, obs: torch.Tensor, **kwargs) -> Dict[str, torch.Tensor]: """ Arguments: - data (:obj:`dict`): Dict type data, including at least \ ['main_obs', 'target_obs', 'action', 'reward', 'done', 'weight'] Returns: - List containing a dict of the model output for each sequence. """ sequences = list(torch.split(obs, self.seq_len, dim=0)) if sequences[-1].shape[0] < self.seq_len: last = sequences[-1].clone() diff = self.seq_len - last.shape[0] sequences[-1] = F.pad(input=last, pad=(0, 0, 0, 0, 0, diff), mode='constant', value=0) outputs = [] for i, seq in enumerate(sequences): out = self._model.forward(seq, **kwargs) outputs.append(out) out = {} for k in outputs[0].keys(): out_k = [o[k] for o in outputs] out_k = torch.cat(out_k, dim=0) out[k] = out_k return out class TransformerMemoryWrapper(IModelWrapper): def __init__( self, model: Any, batch_size: int, ) -> None: """ Overview: Stores a copy of the Transformer memory in order to be reused across different phases. To make it more clear, suppose the training pipeline is divided into 3 phases: evaluate, collect, learn. The goal of the wrapper is to maintain the content of the memory at the end of each phase and reuse it when the same phase is executed again. In this way, it prevents different phases to interferer each other memory. Arguments: - model (:obj:`Any`): Wrapped model class, should contain forward method. - batch_size (:obj:`int`): Memory batch size. """ super().__init__(model) # shape (layer_num, memory_len, bs, embedding_dim) self._model.reset_memory(batch_size=batch_size) self.memory = self._model.get_memory() self.mem_shape = self.memory.shape def forward(self, *args, **kwargs) -> Dict[str, torch.Tensor]: """ Arguments: - data (:obj:`dict`): Dict type data, including at least \ ['main_obs', 'target_obs', 'action', 'reward', 'done', 'weight'] Returns: - Output of the forward method. """ self._model.reset_memory(state=self.memory) out = self._model.forward(*args, **kwargs) self.memory = self._model.get_memory() return out def reset(self, *args, **kwargs): state_id = kwargs.get('data_id', None) if state_id is None: self.memory = torch.zeros(self.mem_shape) else: self.reset_memory_entry(state_id) if hasattr(self._model, 'reset'): return self._model.reset(*args, **kwargs) def reset_memory_entry(self, state_id: Optional[list] = None) -> None: """ Overview: Reset specific batch of the memory, batch ids are specified in 'state_id' """ for _id in state_id: self.memory[:, :, _id] = torch.zeros((self.mem_shape[-1])) def show_memory_occupancy(self, layer=0) -> None: memory = self.memory memory_shape = memory.shape print('Layer {}-------------------------------------------'.format(layer)) for b in range(memory_shape[-2]): print('b{}: '.format(b), end='') for m in range(memory_shape[1]): if sum(abs(memory[layer][m][b].flatten())) != 0: print(1, end='') else: print(0, end='') print() def sample_action(logit=None, prob=None): if prob is None: prob = torch.softmax(logit, dim=-1) shape = prob.shape prob += 1e-8 prob = prob.view(-1, shape[-1]) # prob can also be treated as weight in multinomial sample action = torch.multinomial(prob, 1).squeeze(-1) action = action.view(*shape[:-1]) return action class ArgmaxSampleWrapper(IModelWrapper): """ Overview: Used to help the model to sample argmax action. Interfaces: ``forward``. """ def forward(self, *args, **kwargs): """ Overview: Employ model forward computation graph, and use the output logit to greedily select max action (argmax). """ output = self._model.forward(*args, **kwargs) assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output)) logit = output['logit'] assert isinstance(logit, torch.Tensor) or isinstance(logit, list) if isinstance(logit, torch.Tensor): logit = [logit] if 'action_mask' in output: mask = output['action_mask'] if isinstance(mask, torch.Tensor): mask = [mask] logit = [l.sub_(1e8 * (1 - m)) for l, m in zip(logit, mask)] action = [l.argmax(dim=-1) for l in logit] if len(action) == 1: action, logit = action[0], logit[0] output['action'] = action return output class CombinationArgmaxSampleWrapper(IModelWrapper): r""" Overview: Used to help the model to sample combination argmax action. Interfaces: ``forward``. """ def forward(self, shot_number, *args, **kwargs): output = self._model.forward(*args, **kwargs) # Generate actions. act = [] mask = torch.zeros_like(output['logit']) for ii in range(shot_number): masked_logit = output['logit'] + mask actions = masked_logit.argmax(dim=-1) act.append(actions) for jj in range(actions.shape[0]): mask[jj][actions[jj]] = -1e8 # `act` is shaped: (B, shot_number) act = torch.stack(act, dim=1) output['action'] = act return output class CombinationMultinomialSampleWrapper(IModelWrapper): r""" Overview: Used to help the model to sample combination multinomial action. Interfaces: ``forward``. """ def forward(self, shot_number, *args, **kwargs): output = self._model.forward(*args, **kwargs) # Generate actions. act = [] mask = torch.zeros_like(output['logit']) for ii in range(shot_number): dist = torch.distributions.Categorical(logits=output['logit'] + mask) actions = dist.sample() act.append(actions) for jj in range(actions.shape[0]): mask[jj][actions[jj]] = -1e8 # `act` is shaped: (B, shot_number) act = torch.stack(act, dim=1) output['action'] = act return output class HybridArgmaxSampleWrapper(IModelWrapper): r""" Overview: Used to help the model to sample argmax action in hybrid action space, i.e.{'action_type': discrete, 'action_args', continuous} Interfaces: ``forward``. """ def forward(self, *args, **kwargs): output = self._model.forward(*args, **kwargs) assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output)) if 'logit' not in output: return output logit = output['logit'] assert isinstance(logit, torch.Tensor) or isinstance(logit, list) if isinstance(logit, torch.Tensor): logit = [logit] if 'action_mask' in output: mask = output['action_mask'] if isinstance(mask, torch.Tensor): mask = [mask] logit = [l.sub_(1e8 * (1 - m)) for l, m in zip(logit, mask)] action = [l.argmax(dim=-1) for l in logit] if len(action) == 1: action, logit = action[0], logit[0] output = {'action': {'action_type': action, 'action_args': output['action_args']}, 'logit': logit} return output class MultinomialSampleWrapper(IModelWrapper): """ Overview: Used to help the model get the corresponding action from the output['logits']self. Interfaces: ``forward``. """ def forward(self, *args, **kwargs): if 'alpha' in kwargs.keys(): alpha = kwargs.pop('alpha') else: alpha = None output = self._model.forward(*args, **kwargs) assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output)) logit = output['logit'] assert isinstance(logit, torch.Tensor) or isinstance(logit, list) if isinstance(logit, torch.Tensor): logit = [logit] if 'action_mask' in output: mask = output['action_mask'] if isinstance(mask, torch.Tensor): mask = [mask] logit = [l.sub_(1e8 * (1 - m)) for l, m in zip(logit, mask)] if alpha is None: action = [sample_action(logit=l) for l in logit] else: # Note that if alpha is passed in here, we will divide logit by alpha. action = [sample_action(logit=l / alpha) for l in logit] if len(action) == 1: action, logit = action[0], logit[0] output['action'] = action return output class EpsGreedySampleWrapper(IModelWrapper): r""" Overview: Epsilon greedy sampler used in collector_model to help balance exploratin and exploitation. The type of eps can vary from different algorithms, such as: - float (i.e. python native scalar): for almost normal case - Dict[str, float]: for algorithm NGU Interfaces: ``forward``. """ def forward(self, *args, **kwargs): eps = kwargs.pop('eps') output = self._model.forward(*args, **kwargs) assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output)) logit = output['logit'] assert isinstance(logit, torch.Tensor) or isinstance(logit, list) if isinstance(logit, torch.Tensor): logit = [logit] if 'action_mask' in output: mask = output['action_mask'] if isinstance(mask, torch.Tensor): mask = [mask] logit = [l.sub_(1e8 * (1 - m)) for l, m in zip(logit, mask)] else: mask = None action = [] if isinstance(eps, dict): # for NGU policy, eps is a dict, each collect env has a different eps for i, l in enumerate(logit[0]): eps_tmp = eps[i] if np.random.random() > eps_tmp: action.append(l.argmax(dim=-1)) else: if mask is not None: action.append( sample_action(prob=mask[0][i].float().unsqueeze(0)).to(logit[0].device).squeeze(0) ) else: action.append(torch.randint(0, l.shape[-1], size=l.shape[:-1]).to(logit[0].device)) action = torch.stack(action, dim=-1) # shape torch.size([env_num]) else: for i, l in enumerate(logit): if np.random.random() > eps: action.append(l.argmax(dim=-1)) else: if mask is not None: action.append(sample_action(prob=mask[i].float())) else: action.append(torch.randint(0, l.shape[-1], size=l.shape[:-1])) if len(action) == 1: action, logit = action[0], logit[0] output['action'] = action return output class EpsGreedyMultinomialSampleWrapper(IModelWrapper): r""" Overview: Epsilon greedy sampler coupled with multinomial sample used in collector_model to help balance exploration and exploitation. Interfaces: ``forward``. """ def forward(self, *args, **kwargs): eps = kwargs.pop('eps') if 'alpha' in kwargs.keys(): alpha = kwargs.pop('alpha') else: alpha = None output = self._model.forward(*args, **kwargs) assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output)) logit = output['logit'] assert isinstance(logit, torch.Tensor) or isinstance(logit, list) if isinstance(logit, torch.Tensor): logit = [logit] if 'action_mask' in output: mask = output['action_mask'] if isinstance(mask, torch.Tensor): mask = [mask] logit = [l.sub_(1e8 * (1 - m)) for l, m in zip(logit, mask)] else: mask = None action = [] for i, l in enumerate(logit): if np.random.random() > eps: if alpha is None: action = [sample_action(logit=l) for l in logit] else: # Note that if alpha is passed in here, we will divide logit by alpha. action = [sample_action(logit=l / alpha) for l in logit] else: if mask: action.append(sample_action(prob=mask[i].float())) else: action.append(torch.randint(0, l.shape[-1], size=l.shape[:-1])) if len(action) == 1: action, logit = action[0], logit[0] output['action'] = action return output class HybridEpsGreedySampleWrapper(IModelWrapper): r""" Overview: Epsilon greedy sampler used in collector_model to help balance exploration and exploitation. In hybrid action space, i.e.{'action_type': discrete, 'action_args', continuous} Interfaces: ``forward``. """ def forward(self, *args, **kwargs): eps = kwargs.pop('eps') output = self._model.forward(*args, **kwargs) assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output)) logit = output['logit'] assert isinstance(logit, torch.Tensor) or isinstance(logit, list) if isinstance(logit, torch.Tensor): logit = [logit] if 'action_mask' in output: mask = output['action_mask'] if isinstance(mask, torch.Tensor): mask = [mask] logit = [l.sub_(1e8 * (1 - m)) for l, m in zip(logit, mask)] else: mask = None action = [] for i, l in enumerate(logit): if np.random.random() > eps: action.append(l.argmax(dim=-1)) else: if mask: action.append(sample_action(prob=mask[i].float())) else: action.append(torch.randint(0, l.shape[-1], size=l.shape[:-1])) if len(action) == 1: action, logit = action[0], logit[0] output = {'action': {'action_type': action, 'action_args': output['action_args']}, 'logit': logit} return output class HybridEpsGreedyMultinomialSampleWrapper(IModelWrapper): """ Overview: Epsilon greedy sampler coupled with multinomial sample used in collector_model to help balance exploration and exploitation. In hybrid action space, i.e.{'action_type': discrete, 'action_args', continuous} Interfaces: ``forward``. """ def forward(self, *args, **kwargs): eps = kwargs.pop('eps') output = self._model.forward(*args, **kwargs) assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output)) if 'logit' not in output: return output logit = output['logit'] assert isinstance(logit, torch.Tensor) or isinstance(logit, list) if isinstance(logit, torch.Tensor): logit = [logit] if 'action_mask' in output: mask = output['action_mask'] if isinstance(mask, torch.Tensor): mask = [mask] logit = [l.sub_(1e8 * (1 - m)) for l, m in zip(logit, mask)] else: mask = None action = [] for i, l in enumerate(logit): if np.random.random() > eps: action = [sample_action(logit=l) for l in logit] else: if mask: action.append(sample_action(prob=mask[i].float())) else: action.append(torch.randint(0, l.shape[-1], size=l.shape[:-1])) if len(action) == 1: action, logit = action[0], logit[0] output = {'action': {'action_type': action, 'action_args': output['action_args']}, 'logit': logit} return output class HybridReparamMultinomialSampleWrapper(IModelWrapper): """ Overview: Reparameterization sampler coupled with multinomial sample used in collector_model to help balance exploration and exploitation. In hybrid action space, i.e.{'action_type': discrete, 'action_args', continuous} Interfaces: forward """ def forward(self, *args, **kwargs): output = self._model.forward(*args, **kwargs) assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output)) logit = output['logit'] # logit: {'action_type': action_type_logit, 'action_args': action_args_logit} # discrete part action_type_logit = logit['action_type'] prob = torch.softmax(action_type_logit, dim=-1) pi_action = Categorical(prob) action_type = pi_action.sample() # continuous part mu, sigma = logit['action_args']['mu'], logit['action_args']['sigma'] dist = Independent(Normal(mu, sigma), 1) action_args = dist.sample() action = {'action_type': action_type, 'action_args': action_args} output['action'] = action return output class HybridDeterministicArgmaxSampleWrapper(IModelWrapper): """ Overview: Deterministic sampler coupled with argmax sample used in eval_model. In hybrid action space, i.e.{'action_type': discrete, 'action_args', continuous} Interfaces: forward """ def forward(self, *args, **kwargs): output = self._model.forward(*args, **kwargs) assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output)) logit = output['logit'] # logit: {'action_type': action_type_logit, 'action_args': action_args_logit} # discrete part action_type_logit = logit['action_type'] action_type = action_type_logit.argmax(dim=-1) # continuous part mu = logit['action_args']['mu'] action_args = mu action = {'action_type': action_type, 'action_args': action_args} output['action'] = action return output class DeterministicSampleWrapper(IModelWrapper): """ Overview: Deterministic sampler (just use mu directly) used in eval_model. Interfaces: forward """ def forward(self, *args, **kwargs): output = self._model.forward(*args, **kwargs) assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output)) output['action'] = output['logit']['mu'] return output class ReparamSampleWrapper(IModelWrapper): """ Overview: Reparameterization gaussian sampler used in collector_model. Interfaces: forward """ def forward(self, *args, **kwargs): output = self._model.forward(*args, **kwargs) assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output)) mu, sigma = output['logit']['mu'], output['logit']['sigma'] dist = Independent(Normal(mu, sigma), 1) output['action'] = dist.sample() return output class ActionNoiseWrapper(IModelWrapper): r""" Overview: Add noise to collector's action output; Do clips on both generated noise and action after adding noise. Interfaces: ``__init__``, ``forward``. Arguments: - model (:obj:`Any`): Wrapped model class. Should contain ``forward`` method. - noise_type (:obj:`str`): The type of noise that should be generated, support ['gauss', 'ou']. - noise_kwargs (:obj:`dict`): Keyword args that should be used in noise init. Depends on ``noise_type``. - noise_range (:obj:`Optional[dict]`): Range of noise, used for clipping. - action_range (:obj:`Optional[dict]`): Range of action + noise, used for clip, default clip to [-1, 1]. """ def __init__( self, model: Any, noise_type: str = 'gauss', noise_kwargs: dict = {}, noise_range: Optional[dict] = None, action_range: Optional[dict] = { 'min': -1, 'max': 1 } ) -> None: super().__init__(model) self.noise_generator = create_noise_generator(noise_type, noise_kwargs) self.noise_range = noise_range self.action_range = action_range def forward(self, *args, **kwargs): # if noise sigma need decay, update noise kwargs. if 'sigma' in kwargs: sigma = kwargs.pop('sigma') if sigma is not None: self.noise_generator.sigma = sigma output = self._model.forward(*args, **kwargs) assert isinstance(output, dict), "model output must be dict, but find {}".format(type(output)) if 'action' in output or 'action_args' in output: key = 'action' if 'action' in output else 'action_args' action = output[key] assert isinstance(action, torch.Tensor) action = self.add_noise(action) output[key] = action return output def add_noise(self, action: torch.Tensor) -> torch.Tensor: r""" Overview: Generate noise and clip noise if needed. Add noise to action and clip action if needed. Arguments: - action (:obj:`torch.Tensor`): Model's action output. Returns: - noised_action (:obj:`torch.Tensor`): Action processed after adding noise and clipping. """ noise = self.noise_generator(action.shape, action.device) if self.noise_range is not None: noise = noise.clamp(self.noise_range['min'], self.noise_range['max']) action += noise if self.action_range is not None: action = action.clamp(self.action_range['min'], self.action_range['max']) return action class TargetNetworkWrapper(IModelWrapper): r""" Overview: Maintain and update the target network Interfaces: update, reset """ def __init__(self, model: Any, update_type: str, update_kwargs: dict): super().__init__(model) assert update_type in ['momentum', 'assign'] self._update_type = update_type self._update_kwargs = update_kwargs self._update_count = 0 def reset(self, *args, **kwargs): target_update_count = kwargs.pop('target_update_count', None) self.reset_state(target_update_count) if hasattr(self._model, 'reset'): return self._model.reset(*args, **kwargs) def update(self, state_dict: dict, direct: bool = False) -> None: r""" Overview: Update the target network state dict Arguments: - state_dict (:obj:`dict`): the state_dict from learner model - direct (:obj:`bool`): whether to update the target network directly, \ if true then will simply call the load_state_dict method of the model """ if direct: self._model.load_state_dict(state_dict, strict=True) self._update_count = 0 else: if self._update_type == 'assign': if (self._update_count + 1) % self._update_kwargs['freq'] == 0: self._model.load_state_dict(state_dict, strict=True) self._update_count += 1 elif self._update_type == 'momentum': theta = self._update_kwargs['theta'] for name, p in self._model.named_parameters(): # default theta = 0.001 p.data = (1 - theta) * p.data + theta * state_dict[name] def reset_state(self, target_update_count: int = None) -> None: r""" Overview: Reset the update_count Arguments: target_update_count (:obj:`int`): reset target update count value. """ if target_update_count is not None: self._update_count = target_update_count class TeacherNetworkWrapper(IModelWrapper): """ Overview: Set the teacher Network. Set the model's model.teacher_cfg to the input teacher_cfg """ def __init__(self, model, teacher_cfg): super().__init__(model) self._model._teacher_cfg = teacher_cfg raise NotImplementedError wrapper_name_map = { 'base': BaseModelWrapper, 'hidden_state': HiddenStateWrapper, 'argmax_sample': ArgmaxSampleWrapper, 'hybrid_argmax_sample': HybridArgmaxSampleWrapper, 'eps_greedy_sample': EpsGreedySampleWrapper, 'eps_greedy_multinomial_sample': EpsGreedyMultinomialSampleWrapper, 'deterministic_sample': DeterministicSampleWrapper, 'reparam_sample': ReparamSampleWrapper, 'hybrid_eps_greedy_sample': HybridEpsGreedySampleWrapper, 'hybrid_eps_greedy_multinomial_sample': HybridEpsGreedyMultinomialSampleWrapper, 'hybrid_reparam_multinomial_sample': HybridReparamMultinomialSampleWrapper, 'hybrid_deterministic_argmax_sample': HybridDeterministicArgmaxSampleWrapper, 'multinomial_sample': MultinomialSampleWrapper, 'action_noise': ActionNoiseWrapper, 'transformer_input': TransformerInputWrapper, 'transformer_segment': TransformerSegmentWrapper, 'transformer_memory': TransformerMemoryWrapper, # model wrapper 'target': TargetNetworkWrapper, 'teacher': TeacherNetworkWrapper, 'combination_argmax_sample': CombinationArgmaxSampleWrapper, 'combination_multinomial_sample': CombinationMultinomialSampleWrapper, } def model_wrap(model: Union[nn.Module, IModelWrapper], wrapper_name: str = None, **kwargs): """ Overview: Wrap the model with the specified wrapper and return the wrappered model. Arguments: - model (:obj:`Any`): The model to be wrapped. - wrapper_name (:obj:`str`): The name of the wrapper to be used. .. note:: The arguments of the wrapper should be passed in as kwargs. """ if wrapper_name in wrapper_name_map: # TODO test whether to remove this if branch if not isinstance(model, IModelWrapper): model = wrapper_name_map['base'](model) model = wrapper_name_map[wrapper_name](model, **kwargs) else: raise TypeError("not support model_wrapper type: {}".format(wrapper_name)) return model def register_wrapper(name: str, wrapper_type: type) -> None: """ Overview: Register new wrapper to ``wrapper_name_map``. When user implements a new wrapper, they must call this function \ to complete the registration. Then the wrapper can be called by ``model_wrap``. Arguments: - name (:obj:`str`): The name of the new wrapper to be registered. - wrapper_type (:obj:`type`): The wrapper class needs to be added in ``wrapper_name_map``. This argument \ should be the subclass of ``IModelWrapper``. """ assert isinstance(name, str) assert issubclass(wrapper_type, IModelWrapper) wrapper_name_map[name] = wrapper_type