yt-video-to-summary / models /t5_small_medium_title_generation.py
zman1x1's picture
Upload 21 files
3456a58
raw
history blame
915 Bytes
import nltk
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
def t5model(prompt: str) -> str:
tokenizer = AutoTokenizer.from_pretrained("fabiochiu/t5-small-medium-title-generation")
model = AutoModelForSeq2SeqLM.from_pretrained("fabiochiu/t5-small-medium-title-generation", device_map="cuda:0", torch_dtype=torch.float16)
inputs = tokenizer(
["summarize:" + prompt],
return_tensors="pt",
max_length=1024,
truncation=True
)
# Move the inputs tensor to the same device as the model tensor
inputs = {k: v.to(model.device) for k, v in inputs.items()}
outputs = model.generate(
**inputs,
num_beams=8,
do_sample=True,
min_length=8,
max_length=15
)
decoded_output = tokenizer.batch_decode(
outputs, skip_special_tokens=True
)[0]
return decoded_output