File size: 23,390 Bytes
414b431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import numpy as np
import os, time, datetime
import torch
import torch.utils.tensorboard
import importlib
import shutil
import utils.util as util
import utils.util_vis as util_vis

from torch.nn.parallel import DistributedDataParallel as DDP
from utils.util import print_eval, setup, cleanup
from utils.util import EasyDict as edict
from utils.eval_depth import DepthMetric
from copy import deepcopy
from model.compute_graph import graph_depth

# ============================ main engine for training and evaluation ============================

class Runner():

    def __init__(self, opt):
        super().__init__()
        if os.path.isdir(opt.output_path) and opt.resume == False and opt.device == 0:
            for filename in os.listdir(opt.output_path):
                if "tfevents" in filename: os.remove(os.path.join(opt.output_path, filename))
                if "html" in filename: os.remove(os.path.join(opt.output_path, filename))
                if "vis" in filename: shutil.rmtree(os.path.join(opt.output_path, filename))
                if "dump" in filename: shutil.rmtree(os.path.join(opt.output_path, filename))
                if "embedding" in filename: shutil.rmtree(os.path.join(opt.output_path, filename))
        if opt.device == 0: 
            os.makedirs(opt.output_path,exist_ok=True)
        setup(opt.device, opt.world_size, opt.port)
        opt.batch_size = opt.batch_size // opt.world_size
    
    def get_viz_data(self, opt):
        # get data for visualization
        viz_data_list = []
        sample_range = len(self.viz_loader)
        viz_interval = sample_range // opt.eval.n_vis
        for i in range(sample_range):
            current_batch = next(self.viz_loader_iter)
            if i % viz_interval != 0: continue
            viz_data_list.append(current_batch)
        return viz_data_list
    
    def load_dataset(self, opt, eval_split="test"):
        data_train = importlib.import_module('data.{}'.format(opt.data.dataset_train))
        data_test = importlib.import_module('data.{}'.format(opt.data.dataset_test))
        if opt.device == 0: print("loading training data...")
        self.batch_order = []
        self.train_data = data_train.Dataset(opt, split="train", load_3D=False)
        self.train_loader = self.train_data.setup_loader(opt, shuffle=True, use_ddp=True, drop_last=True)
        self.num_batches = len(self.train_loader)
        if opt.device == 0: print("loading test data...")
        self.test_data = data_test.Dataset(opt, split=eval_split, load_3D=False)
        self.test_loader = self.test_data.setup_loader(opt, shuffle=False, use_ddp=True, drop_last=True, batch_size=opt.eval.batch_size)
        self.num_batches_test = len(self.test_loader)
        if len(self.test_loader.sampler) * opt.world_size < len(self.test_data):
            self.aux_test_dataset = torch.utils.data.Subset(self.test_data,
                                    range(len(self.test_loader.sampler) * opt.world_size, len(self.test_data)))
            self.aux_test_loader = torch.utils.data.DataLoader(
                self.aux_test_dataset, batch_size=opt.eval.batch_size, shuffle=False, drop_last=False,
                num_workers=opt.data.num_workers)
        if opt.device == 0:
            print("creating data for visualization...")
            self.viz_loader = self.test_data.setup_loader(opt, shuffle=False, use_ddp=False, drop_last=False, batch_size=1)
            self.viz_loader_iter = iter(self.viz_loader)
            self.viz_data = self.get_viz_data(opt)

    def build_networks(self, opt):
        if opt.device == 0: print("building networks...")
        self.graph = DDP(graph_depth.Graph(opt).to(opt.device), device_ids=[opt.device], find_unused_parameters=True)
        self.depth_metric = DepthMetric(thresholds=opt.eval.d_thresholds, depth_cap=opt.eval.depth_cap)

# =================================================== set up training =========================================================

    def setup_optimizer(self, opt):
        if opt.device == 0: print("setting up optimizers...")
        param_nodecay = []
        param_decay = []
        for name, param in self.graph.named_parameters():
            # skip and fixed params
            if not param.requires_grad:
                continue
            if param.ndim <= 1 or name.endswith(".bias"):
                # print("{} -> finetune_param_nodecay".format(name))
                param_nodecay.append(param)
            else:
                param_decay.append(param)
                # print("{} -> finetune_param_decay".format(name))
            # create the optim dictionary
            optim_dict = [
                {'params': param_nodecay, 'lr': opt.optim.lr, 'weight_decay': 0.},
                {'params': param_decay, 'lr': opt.optim.lr, 'weight_decay': opt.optim.weight_decay}
            ]
            
        self.optim = torch.optim.AdamW(optim_dict, betas=(0.9, 0.95))
        if opt.optim.sched: 
            self.sched = torch.optim.lr_scheduler.CosineAnnealingLR(self.optim, opt.max_epoch)
        if opt.optim.amp:
            self.scaler = torch.cuda.amp.GradScaler()

    def restore_checkpoint(self, opt, best=False, evaluate=False):
        epoch_start, iter_start = None, None
        if opt.resume:
            if opt.device == 0: print("resuming from previous checkpoint...")
            epoch_start, iter_start, best_val, best_ep = util.restore_checkpoint(opt, self, resume=opt.resume, best=best, evaluate=evaluate)
            self.best_val = best_val
            self.best_ep = best_ep
        elif opt.load is not None:
            if opt.device == 0: print("loading weights from checkpoint {}...".format(opt.load))
            epoch_start, iter_start, best_val, best_ep = util.restore_checkpoint(opt, self, load_name=opt.load)
        else:
            if opt.device == 0: print("initializing weights from scratch...")
        self.epoch_start = epoch_start or 0
        self.iter_start = iter_start or 0

    def setup_visualizer(self, opt, test=False):
        if opt.device == 0: 
            print("setting up visualizers...")
            if opt.tb:
                self.tb = torch.utils.tensorboard.SummaryWriter(log_dir=opt.output_path, flush_secs=10)
    
    def train(self, opt):
        # before training
        torch.cuda.set_device(opt.device)
        torch.cuda.empty_cache()
        if opt.device == 0: print("TRAINING START")
        self.train_metric_logger = util.MetricLogger(delimiter="  ")
        self.train_metric_logger.add_meter('lr', util.SmoothedValue(window_size=1, fmt='{value:.6f}'))
        self.iter_skip = self.iter_start % len(self.train_loader)
        self.it = self.iter_start
        self.skip_dis = False
        if not opt.resume: 
            self.best_val = np.inf
            self.best_ep = 1
        # training
        if self.iter_start == 0 and not opt.debug: self.evaluate(opt, ep=0, training=True)
        # if opt.device == 0: self.save_checkpoint(opt, ep=0, it=0, best_val=self.best_val, best_ep=self.best_ep)
        self.ep = self.epoch_start
        for self.ep in range(self.epoch_start, opt.max_epoch):
            self.train_epoch(opt)
        # after training
        if opt.device == 0: self.save_checkpoint(opt, ep=self.ep, it=self.it, best_val=self.best_val, best_ep=self.best_ep)
        if opt.tb and opt.device == 0:
            self.tb.flush()
            self.tb.close()
        if opt.device == 0: 
            print("TRAINING DONE")
            print("Best val: %.4f @ epoch %d" % (self.best_val, self.best_ep))
        cleanup()
    
    def train_epoch(self, opt):
        # before train epoch
        self.train_loader.sampler.set_epoch(self.ep)
        if opt.device == 0:
            print("training epoch {}".format(self.ep+1))
        batch_progress = range(self.num_batches)
        self.graph.train()
        # train epoch
        loader = iter(self.train_loader)
           
        for batch_id in batch_progress:
            # if resuming from previous checkpoint, skip until the last iteration number is reached
            if self.iter_skip>0:
                self.iter_skip -= 1
                continue
            batch = next(loader)
            # train iteration
            var = edict(batch)
            opt.H, opt.W = opt.image_size
            var = util.move_to_device(var, opt.device)
            loss = self.train_iteration(opt, var, batch_progress)
            
        # after train epoch
        lr = self.sched.get_last_lr()[0] if opt.optim.sched else opt.optim.lr
        if opt.optim.sched: self.sched.step()
        if (self.ep + 1) % opt.freq.eval == 0:
            if opt.device == 0: print("validating epoch {}".format(self.ep+1))
            current_val = self.evaluate(opt, ep=self.ep+1, training=True)
            if current_val < self.best_val and opt.device == 0:
                self.best_val = current_val
                self.best_ep = self.ep + 1
                self.save_checkpoint(opt, ep=self.ep, it=self.it, best_val=self.best_val, best_ep=self.best_ep, best=True, latest=True)

    def train_iteration(self, opt, var, loader):
        # before train iteration
        torch.distributed.barrier()
        
        # train iteration
        with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=opt.optim.amp):
            var, loss = self.graph.forward(opt, var, training=True, get_loss=True)
            loss = self.summarize_loss(opt, var, loss)
            loss_scaled = loss.all / opt.optim.accum
            
        # backward
        if opt.optim.amp:
            self.scaler.scale(loss_scaled).backward()
            # skip update if accumulating gradient
            if (self.it + 1) % opt.optim.accum == 0:
                self.scaler.unscale_(self.optim)
                # gradient clipping
                if opt.optim.clip_norm:
                    norm = torch.nn.utils.clip_grad_norm_(self.graph.parameters(), opt.optim.clip_norm)
                    if opt.debug: print("Grad norm: {}".format(norm))
                self.scaler.step(self.optim)
                self.scaler.update()
                self.optim.zero_grad()
        else:
            loss_scaled.backward()
            if (self.it + 1) % opt.optim.accum == 0:
                if opt.optim.clip_norm:
                    norm = torch.nn.utils.clip_grad_norm_(self.graph.parameters(), opt.optim.clip_norm)
                    if opt.debug: print("Grad norm: {}".format(norm))
                self.optim.step()
                self.optim.zero_grad()

        # after train iteration
        lr = self.sched.get_last_lr()[0] if opt.optim.sched else opt.optim.lr
        self.train_metric_logger.update(lr=lr)
        self.train_metric_logger.update(loss=loss.all)
        if opt.device == 0: 
            if (self.it) % opt.freq.vis == 0 and not opt.debug: 
                self.visualize(opt, var, step=self.it, split="train")
            if (self.it+1) % opt.freq.ckpt_latest == 0 and not opt.debug: 
                self.save_checkpoint(opt, ep=self.ep, it=self.it+1, best_val=self.best_val, best_ep=self.best_ep, latest=True)
            if (self.it) % opt.freq.scalar == 0 and not opt.debug: 
                self.log_scalars(opt, var, loss, step=self.it, split="train")
            if (self.it) % (opt.freq.save_vis * (self.it//10000*10+1)) == 0 and not opt.debug: 
                self.vis_train_iter(opt)
            if (self.it) % opt.freq.print == 0:
                print('[{}] '.format(datetime.datetime.now().time()), end='')
                print(f'Train Iter {self.it}/{self.num_batches*opt.max_epoch}: {self.train_metric_logger}')
        self.it += 1
        return loss
        
    @torch.no_grad()
    def vis_train_iter(self, opt):
        self.graph.eval()
        for i in range(len(self.viz_data)):
            var_viz = edict(deepcopy(self.viz_data[i]))
            var_viz = util.move_to_device(var_viz, opt.device)
            var_viz = self.graph.module(opt, var_viz, training=False, get_loss=False)
            vis_folder = "vis_log/iter_{}".format(self.it)
            os.makedirs("{}/{}".format(opt.output_path, vis_folder), exist_ok=True)
            util_vis.dump_images(opt, var_viz.idx, "image_input", var_viz.rgb_input_map, masks=None, from_range=(0, 1), folder=vis_folder)
            util_vis.dump_images(opt, var_viz.idx, "mask_input", var_viz.mask_input_map, folder=vis_folder)
            util_vis.dump_depths(opt, var_viz.idx, "depth_est", var_viz.depth_pred, var_viz.mask_input_map, rescale=True, folder=vis_folder)
            util_vis.dump_depths(opt, var_viz.idx, "depth_input", var_viz.depth_input_map, var_viz.mask_input_map, rescale=True, folder=vis_folder)
            if 'seen_points_pred' in var_viz and 'seen_points_gt' in var_viz:
                util_vis.dump_pointclouds_compare(opt, var_viz.idx, "seen_surface", var_viz.seen_points_pred, var_viz.seen_points_gt, folder=vis_folder)
        self.graph.train()

    def summarize_loss(self, opt, var, loss, non_act_loss_key=[]):
        loss_all = 0.
        assert("all" not in loss)
        # weigh losses
        for key in loss:
            assert(key in opt.loss_weight)
            if opt.loss_weight[key] is not None:
                assert not torch.isinf(loss[key].mean()), "loss {} is Inf".format(key)
                assert not torch.isnan(loss[key].mean()), "loss {} is NaN".format(key)
                loss_all += float(opt.loss_weight[key])*loss[key].mean() if key not in non_act_loss_key else 0.0*loss[key].mean()
        loss.update(all=loss_all)
        return loss

# =================================================== set up evaluation =========================================================

    @torch.no_grad()
    def evaluate(self, opt, ep, training=False):
        self.graph.eval()
        loss_eval = edict()
        
        # metric dictionary
        metric_eval = {}
        for metric_key in self.depth_metric.metric_keys:
            metric_eval[metric_key] = []
        metric_avg = {}
        eval_metric_logger = util.MetricLogger(delimiter="  ")
        
        # dataloader on the test set
        with torch.cuda.device(opt.device):
            for it, batch in enumerate(self.test_loader):
                
                # inference the model
                var = edict(batch)
                var = self.evaluate_batch(opt, var, ep, it, single_gpu=False)

                # record foreground mae for evaluation
                sample_metrics, var.depth_pred_aligned = self.depth_metric.compute_metrics(
                    var.depth_pred, var.depth_input_map, var.mask_eroded if 'mask_eroded' in var else var.mask_input_map)
                var.rmse = sample_metrics['rmse']
                curr_metrics = {}
                for metric_key in metric_eval:
                    metric_eval[metric_key].append(sample_metrics[metric_key])
                    curr_metrics[metric_key] = sample_metrics[metric_key].mean()
                eval_metric_logger.update(**curr_metrics)
                # eval_metric_logger.update(metric_key=sample_metrics[metric_key].mean())
                
                # accumulate the scores
                if opt.device == 0 and it % opt.freq.print_eval == 0: 
                    print('[{}] '.format(datetime.datetime.now().time()), end='')
                    print(f'Eval Iter {it}/{len(self.test_loader)} @ EP {ep}: {eval_metric_logger}')
                
                # dump the result if in eval mode
                if not training: 
                    self.dump_results(opt, var, ep, write_new=(it == 0))

                # save the visualization
                if it == 0 and training and opt.device == 0: 
                    print("visualizing and saving results...")
                    for i in range(len(self.viz_data)):
                        var_viz = edict(deepcopy(self.viz_data[i]))
                        var_viz = self.evaluate_batch(opt, var_viz, ep, it, single_gpu=True)
                        self.visualize(opt, var_viz, step=ep, split="eval")
                        self.dump_results(opt, var_viz, ep, train=True)
            
            # collect the eval results into tensors
            for metric_key in metric_eval:
                metric_eval[metric_key] = torch.cat(metric_eval[metric_key], dim=0)

        if opt.world_size > 1:
            metric_gather_dict = {}
            # empty tensors for gathering
            for metric_key in metric_eval:
                metric_gather_dict[metric_key] = [torch.zeros_like(metric_eval[metric_key]).to(opt.device) for _ in range(opt.world_size)]
            
            # gather the metrics
            torch.distributed.barrier()
            for metric_key in metric_eval:
                torch.distributed.all_gather(metric_gather_dict[metric_key], metric_eval[metric_key])
                metric_gather_dict[metric_key] = torch.cat(metric_gather_dict[metric_key], dim=0)
        else:
            metric_gather_dict = metric_eval
            
        # handle last batch, if any
        if len(self.test_loader.sampler) * opt.world_size < len(self.test_data):
            for metric_key in metric_eval:
                metric_gather_dict[metric_key] = [metric_gather_dict[metric_key]]
            for batch in self.aux_test_loader:
                # inference the model
                var = edict(batch)
                var = self.evaluate_batch(opt, var, ep, it, single_gpu=False)

                # record MAE for evaluation
                sample_metrics, var.depth_pred_aligned = self.depth_metric.compute_metrics(
                    var.depth_pred, var.depth_input_map, var.mask_eroded if 'mask_eroded' in var else var.mask_input_map)
                var.rmse = sample_metrics['rmse']
                for metric_key in metric_eval:
                    metric_gather_dict[metric_key].append(sample_metrics[metric_key])
                
                # dump the result if in eval mode
                if not training and opt.device == 0: 
                    self.dump_results(opt, var, ep, write_new=(it == 0))
            
            for metric_key in metric_eval:
                metric_gather_dict[metric_key] = torch.cat(metric_gather_dict[metric_key], dim=0)

        assert metric_gather_dict['l1_err'].shape[0] == len(self.test_data)
        # compute the mean of the metrics
        for metric_key in metric_eval:
            metric_avg[metric_key] = metric_gather_dict[metric_key].mean()
        
        # printout and save the metrics     
        if opt.device == 0:
            # print eval info
            print_eval(opt, depth_metrics=metric_avg)
            val_metric = metric_avg['l1_err']
        
            if training:
                # log/visualize results to tb/vis
                self.log_scalars(opt, var, loss_eval, metric=metric_avg, step=ep, split="eval")
            
            if not training:
                # write to file
                metrics_file = os.path.join(opt.output_path, 'best_val.txt')
                with open(metrics_file, "w") as outfile:
                    for metric_key in metric_avg:
                        outfile.write('{}: {:.6f}\n'.format(metric_key, metric_avg[metric_key].item()))
        
            return val_metric.item()
        return float('inf')

    def evaluate_batch(self, opt, var, ep=None, it=None, single_gpu=False):
        var = util.move_to_device(var, opt.device)
        if single_gpu:
            var  = self.graph.module(opt, var, training=False, get_loss=False)
        else:
            var = self.graph(opt, var, training=False, get_loss=False)
        return var

    @torch.no_grad()
    def log_scalars(self, opt, var, loss, metric=None, step=0, split="train"):
        if split=="train":
            sample_metrics, _ = self.depth_metric.compute_metrics(
                var.depth_pred, var.depth_input_map, var.mask_eroded if 'mask_eroded' in var else var.mask_input_map)
            metric = dict(L1_ERR=sample_metrics['l1_err'].mean().item())
        for key, value in loss.items():
            if key=="all": continue
            self.tb.add_scalar("{0}/loss_{1}".format(split, key), value.mean(), step)
        if metric is not None:
            for key, value in metric.items():
                self.tb.add_scalar("{0}/{1}".format(split, key), value, step)

    @torch.no_grad()
    def visualize(self, opt, var, step=0, split="train"):
        pass

    @torch.no_grad()
    def dump_results(self, opt, var, ep, write_new=False, train=False):
        # create the dir
        current_folder = "dump" if train == False else "vis_{}".format(ep)
        os.makedirs("{}/{}/".format(opt.output_path, current_folder), exist_ok=True)
        
        # save the results
        util_vis.dump_images(opt, var.idx, "image_input", var.rgb_input_map, masks=None, from_range=(0, 1), folder=current_folder)
        util_vis.dump_images(opt, var.idx, "mask_input", var.mask_input_map, folder=current_folder)
        util_vis.dump_depths(opt, var.idx, "depth_pred", var.depth_pred, var.mask_input_map, rescale=True, folder=current_folder)
        util_vis.dump_depths(opt, var.idx, "depth_input", var.depth_input_map, var.mask_input_map, rescale=True, folder=current_folder)
        if 'seen_points_pred' in var and 'seen_points_gt' in var:
            util_vis.dump_pointclouds_compare(opt, var.idx, "seen_surface", var.seen_points_pred, var.seen_points_gt, folder=current_folder)
        
        if "depth_pred_aligned" in var:
            # get the max and min for the depth map
            batch_size = var.depth_input_map.shape[0]
            mask = var.mask_eroded if 'mask_eroded' in var else var.mask_input_map
            masked_depth_far_bg = var.depth_input_map * mask + (1 - mask) * 1000
            depth_min_gt = masked_depth_far_bg.view(batch_size, -1).min(dim=1)[0]
            masked_depth_invalid_bg = var.depth_input_map * mask + (1 - mask) * 0
            depth_max_gt = masked_depth_invalid_bg.view(batch_size, -1).max(dim=1)[0]
            depth_vis_pred = (var.depth_pred_aligned - depth_min_gt.view(batch_size, 1, 1, 1)) / (depth_max_gt - depth_min_gt).view(batch_size, 1, 1, 1)
            depth_vis_pred = depth_vis_pred * mask + (1 - mask)
            depth_vis_gt = (var.depth_input_map - depth_min_gt.view(batch_size, 1, 1, 1)) / (depth_max_gt - depth_min_gt).view(batch_size, 1, 1, 1)
            depth_vis_gt = depth_vis_gt * mask + (1 - mask)
            util_vis.dump_depths(opt, var.idx, "depth_gt_aligned", depth_vis_gt.clamp(max=1, min=0), None, rescale=False, folder=current_folder)
            util_vis.dump_depths(opt, var.idx, "depth_pred_aligned", depth_vis_pred.clamp(max=1, min=0), None, rescale=False, folder=current_folder)
            if "mask_eroded" in var and "rmse" in var:
                util_vis.dump_images(opt, var.idx, "image_eroded", var.rgb_input_map, masks=var.mask_eroded, metrics=var.rmse, from_range=(0, 1), folder=current_folder)

    def save_checkpoint(self, opt, ep=0, it=0, best_val=np.inf, best_ep=1, latest=False, best=False):
        util.save_checkpoint(opt, self, ep=ep, it=it, best_val=best_val, best_ep=best_ep, latest=latest, best=best)
        if not latest:
            print("checkpoint saved: ({0}) {1}, epoch {2} (iteration {3})".format(opt.group, opt.name, ep, it))
        if best:
            print("Saving the current model as the best...")