ZeroShape / app.py
zxhuang1698's picture
use persistent data for ckpt
f92bf0d
import gradio as gr
import torch
import torchvision.transforms.functional as torchvision_F
import numpy as np
import os
import shutil
import importlib
import trimesh
import tempfile
import subprocess
import utils.options as options
import shlex
import time
import rembg
from utils.util import EasyDict as edict
from PIL import Image
from utils.eval_3D import get_dense_3D_grid, compute_level_grid, convert_to_explicit
def get_1d_bounds(arr):
nz = np.flatnonzero(arr)
return nz[0], nz[-1]
def get_bbox_from_mask(mask, thr):
masks_for_box = (mask > thr).astype(np.float32)
assert masks_for_box.sum() > 0, "Empty mask!"
x0, x1 = get_1d_bounds(masks_for_box.sum(axis=-2))
y0, y1 = get_1d_bounds(masks_for_box.sum(axis=-1))
return x0, y0, x1, y1
def square_crop(image, bbox, crop_ratio=1.):
x1, y1, x2, y2 = bbox
h, w = y2-y1, x2-x1
yc, xc = (y1+y2)/2, (x1+x2)/2
S = max(h, w)*1.2
scale = S*crop_ratio
image = torchvision_F.crop(image, top=int(yc-scale/2), left=int(xc-scale/2), height=int(scale), width=int(scale))
return image
def preprocess_image(opt, image, bbox):
image = square_crop(image, bbox=bbox)
if image.size[0] != opt.W or image.size[1] != opt.H:
image = image.resize((opt.W, opt.H))
image = torchvision_F.to_tensor(image)
rgb, mask = image[:3], image[3:]
if opt.data.bgcolor is not None:
# replace background color using mask
rgb = rgb * mask + opt.data.bgcolor * (1 - mask)
mask = (mask > 0.5).float()
return rgb, mask
def get_image(opt, image_fname, mask_fname):
image = Image.open(image_fname).convert("RGB")
mask = Image.open(mask_fname).convert("L")
mask_np = np.array(mask)
#binarize
mask_np[mask_np <= 127] = 0
mask_np[mask_np >= 127] = 1.0
image = Image.merge("RGBA", (*image.split(), mask))
bbox = get_bbox_from_mask(mask_np, 0.5)
rgb_input_map, mask_input_map = preprocess_image(opt, image, bbox=bbox)
return rgb_input_map, mask_input_map
def get_intr(opt):
# load camera
f = 1.3875
K = torch.tensor([[f*opt.W, 0, opt.W/2],
[0, f*opt.H, opt.H/2],
[0, 0, 1]]).float()
return K
def get_pixel_grid(H, W, device='cuda'):
y_range = torch.arange(H, dtype=torch.float32).to(device)
x_range = torch.arange(W, dtype=torch.float32).to(device)
Y, X = torch.meshgrid(y_range, x_range, indexing='ij')
Z = torch.ones_like(Y).to(device)
xyz_grid = torch.stack([X, Y, Z],dim=-1).view(-1,3)
return xyz_grid
def unproj_depth(depth, intr):
'''
depth: [B, H, W]
intr: [B, 3, 3]
'''
batch_size, H, W = depth.shape
intr = intr.to(depth.device)
# [B, 3, 3]
K_inv = torch.linalg.inv(intr).float()
# [1, H*W,3]
pixel_grid = get_pixel_grid(H, W, depth.device).unsqueeze(0)
# [B, H*W,3]
pixel_grid = pixel_grid.repeat(batch_size, 1, 1)
# [B, 3, H*W]
ray_dirs = K_inv @ pixel_grid.permute(0, 2, 1).contiguous()
# [B, H*W, 3], in camera coordinates
seen_points = ray_dirs.permute(0, 2, 1).contiguous() * depth.view(batch_size, H*W, 1)
# [B, H, W, 3]
seen_points = seen_points.view(batch_size, H, W, 3)
return seen_points
def prepare_data(opt, image_path, mask_path):
var = edict()
rgb_input_map, mask_input_map = get_image(opt, image_path, mask_path)
intr = get_intr(opt)
var.rgb_input_map = rgb_input_map.unsqueeze(0).to(opt.device)
var.mask_input_map = mask_input_map.unsqueeze(0).to(opt.device)
var.intr = intr.unsqueeze(0).to(opt.device)
var.idx = torch.tensor([0]).to(opt.device).long()
var.pose_gt = False
return var
@torch.no_grad()
def marching_cubes(opt, var, impl_network, visualize_attn=False):
points_3D = get_dense_3D_grid(opt, var) # [B, N, N, N, 3]
level_vox, attn_vis = compute_level_grid(opt, impl_network, var.latent_depth, var.latent_semantic,
points_3D, var.rgb_input_map, visualize_attn)
if attn_vis: var.attn_vis = attn_vis
# occ_grids: a list of length B, each is [N, N, N]
*level_grids, = level_vox.cpu().numpy()
meshes = convert_to_explicit(opt, level_grids, isoval=0.5, to_pointcloud=False)
var.mesh_pred = meshes
return var
@torch.no_grad()
def infer_sample(opt, var, graph):
var = graph.forward(opt, var, training=False, get_loss=False)
var = marching_cubes(opt, var, graph.impl_network, visualize_attn=True)
return var.mesh_pred[0]
def infer(input_image_path, input_mask_path):
opt_cmd = options.parse_arguments(["--yaml=options/shape.yaml", "--datadir=examples", "--eval.vox_res=128", "--ckpt=/data/shape.ckpt"])
opt = options.set(opt_cmd=opt_cmd, safe_check=False)
opt.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# build model
print("Building model...")
opt.pretrain.depth = None
opt.arch.depth.pretrained = None
module = importlib.import_module("model.compute_graph.graph_shape")
graph = module.Graph(opt).to(opt.device)
# download checkpoint
if not os.path.isfile(opt.ckpt):
print("Downloading checkpoint...")
subprocess.run(
shlex.split(
"wget -q -O /data/shape.ckpt https://www.dropbox.com/scl/fi/hv3w9z59dqytievwviko4/shape.ckpt?rlkey=a2gut89kavrldmnt8b3df92oi&dl=0"
)
)
# wait if the checkpoint is still downloading
while not os.path.isfile(opt.ckpt):
time.sleep(1)
# load checkpoint
print("Loading checkpoint...")
checkpoint = torch.load(opt.ckpt, map_location=torch.device(opt.device))
graph.load_state_dict(checkpoint["graph"], strict=True)
graph.eval()
# load the data
print("Loading data...")
var = prepare_data(opt, input_image_path, input_mask_path)
# create the save dir
save_folder = os.path.join(opt.datadir, 'preds')
if os.path.isdir(save_folder):
shutil.rmtree(save_folder)
os.makedirs(save_folder)
opt.output_path = opt.datadir
# inference the model and save the results
print("Inferencing...")
mesh_pred = infer_sample(opt, var, graph)
# rotate the mesh upside down
mesh_pred.apply_transform(trimesh.transformations.rotation_matrix(np.pi, [1, 0, 0]))
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
mesh_pred.export(mesh_path.name, file_type="glb")
return mesh_path.name
def infer_wrapper_mask(input_image_path, input_mask_path):
return infer(input_image_path, input_mask_path)
def infer_wrapper_nomask(input_image_path):
input = Image.open(input_image_path)
segmented = rembg.remove(input)
mask = segmented.split()[-1]
mask_path = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
mask.save(mask_path.name)
return infer(input_image_path, mask_path.name), mask_path.name
def assert_input_image(input_image):
if input_image is None:
raise gr.Error("No image selected or uploaded!")
def assert_mask_image(input_mask):
if input_mask is None:
raise gr.Error("No mask selected or uploaded! Please check the box if you do not have the mask.")
def demo_gradio():
with gr.Blocks(analytics_enabled=False) as demo_ui:
# HEADERS
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ZeroShape: Regression-based Zero-shot Shape Reconstruction')
gr.Markdown("[\[Arxiv\]](https://arxiv.org/pdf/2312.14198.pdf) | [\[Project\]](https://zixuanh.com/projects/zeroshape.html) | [\[GitHub\]](https://github.com/zxhuang1698/ZeroShape)")
gr.Markdown("Please switch to the \"Estimated Mask\" tab if you do not have the foreground mask. The demo will try to estimate the mask for you.")
# with mask
with gr.Tab("Groundtruth Mask"):
with gr.Row():
input_image_tab1 = gr.Image(label="Input Image", image_mode="RGB", sources="upload", type="filepath", elem_id="content_image", width=300)
mask_tab1 = gr.Image(label="Foreground Mask", image_mode="RGB", sources="upload", type="filepath", elem_id="content_image", width=300)
output_mesh_tab1 = gr.Model3D(label="Output Mesh")
with gr.Row():
submit_tab1 = gr.Button('Reconstruct', elem_id="recon_button_tab1", variant='primary')
# examples
with gr.Row():
examples_tab1 = [
['examples/images/armchair.png', 'examples/masks/armchair.png'],
['examples/images/bolt.png', 'examples/masks/bolt.png'],
['examples/images/bucket.png', 'examples/masks/bucket.png'],
['examples/images/case.png', 'examples/masks/case.png'],
['examples/images/dispenser.png', 'examples/masks/dispenser.png'],
['examples/images/hat.png', 'examples/masks/hat.png'],
['examples/images/teddy_bear.png', 'examples/masks/teddy_bear.png'],
['examples/images/tiger.png', 'examples/masks/tiger.png'],
['examples/images/toy.png', 'examples/masks/toy.png'],
['examples/images/wedding_cake.png', 'examples/masks/wedding_cake.png'],
]
gr.Examples(
examples=examples_tab1,
inputs=[input_image_tab1, mask_tab1],
outputs=[output_mesh_tab1],
fn=infer_wrapper_mask,
cache_examples=False#os.getenv('SYSTEM') == 'spaces',
)
# without mask
with gr.Tab("Estimated Mask"):
with gr.Row():
input_image_tab2 = gr.Image(label="Input Image", image_mode="RGB", sources="upload", type="filepath", elem_id="content_image", width=300)
mask_tab2 = gr.Image(label="Foreground Mask", image_mode="RGB", sources="upload", type="filepath", elem_id="content_image", width=300)
output_mesh_tab2 = gr.Model3D(label="Output Mesh")
with gr.Row():
submit_tab2 = gr.Button('Reconstruct', elem_id="recon_button_tab2", variant='primary')
# examples
with gr.Row():
examples_tab2 = [
['examples/images/armchair.png'],
['examples/images/bolt.png'],
['examples/images/bucket.png'],
['examples/images/case.png'],
['examples/images/dispenser.png'],
['examples/images/hat.png'],
['examples/images/teddy_bear.png'],
['examples/images/tiger.png'],
['examples/images/toy.png'],
['examples/images/wedding_cake.png'],
]
gr.Examples(
examples=examples_tab2,
inputs=[input_image_tab2],
outputs=[output_mesh_tab2, mask_tab2],
fn=infer_wrapper_nomask,
cache_examples=False#os.getenv('SYSTEM') == 'spaces',
)
submit_tab1.click(
fn=assert_input_image,
inputs=[input_image_tab1],
queue=False
).success(
fn=assert_mask_image,
inputs=[mask_tab1],
queue=False
).success(
fn=infer_wrapper_mask,
inputs=[input_image_tab1, mask_tab1],
outputs=[output_mesh_tab1],
)
submit_tab2.click(
fn=assert_input_image,
inputs=[input_image_tab2],
queue=False
).success(
fn=infer_wrapper_nomask,
inputs=[input_image_tab2],
outputs=[output_mesh_tab2, mask_tab2],
)
return demo_ui
if __name__ == "__main__":
demo_ui = demo_gradio()
demo_ui.queue(max_size=10)
demo_ui.launch()