sdelangen commited on
Commit
ac6c021
1 Parent(s): 7b83e1b

Update README.Md

Browse files
Files changed (1) hide show
  1. README.Md +108 -0
README.Md CHANGED
@@ -47,3 +47,111 @@ model-index:
47
  - name: Test WER (non-streaming)
48
  type: wer
49
  value: 6.47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  - name: Test WER (non-streaming)
48
  type: wer
49
  value: 6.47
50
+
51
+ ---
52
+ <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
53
+ <br/><br/>
54
+
55
+ # Conformer for LibriSpeech
56
+
57
+ This repository provides all the necessary tools to perform automatic speech
58
+ recognition from an end-to-end system pretrained on LibriSpeech (EN) within
59
+ SpeechBrain. For a better experience, we encourage you to learn more about
60
+ [SpeechBrain](https://speechbrain.github.io).
61
+ The performance of the model is the following:
62
+
63
+ | Release | Test clean WER | Test other WER | GPUs |
64
+ |:-------------:|:--------------:|:--------------:|:--------:|
65
+ | 24-02-26 | 2.72 | 3.13 | 4xA100 80GB |
66
+
67
+ ## Pipeline description
68
+
69
+ TODO
70
+
71
+ This ASR system is composed of 3 different but linked blocks:
72
+ - Tokenizer (unigram) that transforms words into subword units and trained with
73
+ the train transcriptions of LibriSpeech.
74
+ - Neural language model (Transformer LM) trained on the full 10M words dataset.
75
+ - Acoustic model made of a conformer encoder and a joint decoder with CTC +
76
+ transformer. Hence, the decoding also incorporates the CTC probabilities.
77
+
78
+ The system is trained with recordings sampled at 16kHz (single channel).
79
+ The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
80
+
81
+ ## Install SpeechBrain
82
+
83
+ First of all, please install SpeechBrain with the following command:
84
+
85
+ ```
86
+ pip install speechbrain
87
+ ```
88
+
89
+ Please notice that we encourage you to read our tutorials and learn more about
90
+ [SpeechBrain](https://speechbrain.github.io).
91
+
92
+ ### Transcribing your own audio files (in English)
93
+
94
+ TODO + streaming TODO
95
+
96
+ ```python
97
+ from speechbrain.inference.ASR import EncoderDecoderASR
98
+ asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-conformer-transformerlm-librispeech", savedir="pretrained_models/asr-transformer-transformerlm-librispeech")
99
+ asr_model.transcribe_file("speechbrain/asr-conformer-transformerlm-librispeech/example.wav")
100
+ ```
101
+ ### Inference on GPU
102
+ To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
103
+
104
+ ## Parallel Inference on a Batch
105
+
106
+ TODO
107
+
108
+ Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model.
109
+
110
+ ### Training
111
+
112
+ TODO
113
+
114
+ The model was trained with SpeechBrain (Commit hash: 'f73fcc35').
115
+ To train it from scratch follow these steps:
116
+ 1. Clone SpeechBrain:
117
+ ```bash
118
+ git clone https://github.com/speechbrain/speechbrain/
119
+ ```
120
+ 2. Install it:
121
+ ```bash
122
+ cd speechbrain
123
+ pip install -r requirements.txt
124
+ pip install -e .
125
+ ```
126
+
127
+ 3. Run Training:
128
+ ```bash
129
+ cd recipes/LibriSpeech/ASR/transformer
130
+ python train.py hparams/conformer_large.yaml --data_folder=your_data_folder
131
+ ```
132
+
133
+ ### Limitations
134
+ The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
135
+
136
+ # **About SpeechBrain**
137
+ - Website: https://speechbrain.github.io/
138
+ - Code: https://github.com/speechbrain/speechbrain/
139
+ - HuggingFace: https://huggingface.co/speechbrain/
140
+
141
+
142
+ # **Citing SpeechBrain**
143
+ Please, cite SpeechBrain if you use it for your research or business.
144
+
145
+
146
+ ```bibtex
147
+ @misc{speechbrain,
148
+ title={{SpeechBrain}: A General-Purpose Speech Toolkit},
149
+ author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
150
+ year={2021},
151
+ eprint={2106.04624},
152
+ archivePrefix={arXiv},
153
+ primaryClass={eess.AS},
154
+ note={arXiv:2106.04624}
155
+ }
156
+ ```
157
+