poonehmousavi commited on
Commit
58ffba7
1 Parent(s): ab27c6f

Upload 4 files

Browse files
Files changed (4) hide show
  1. README.md +131 -0
  2. config.json +69 -0
  3. hyperparams.yaml +90 -0
  4. preprocessor_config.json +8 -0
README.md CHANGED
@@ -1,3 +1,134 @@
1
  ---
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ thumbnail: null
5
+ pipeline_tag: automatic-speech-recognition
6
+ tags:
7
+ - CTC
8
+ - pytorch
9
+ - speechbrain
10
+ - Transformer
11
  license: apache-2.0
12
+ datasets:
13
+ - commonvoice.14.0
14
+ metrics:
15
+ - wer
16
+ - cer
17
+ model-index:
18
+ - name: asr-wav2vec2-commonvoice-14-en
19
+ results:
20
+ - task:
21
+ name: Automatic Speech Recognition
22
+ type: automatic-speech-recognition
23
+ dataset:
24
+ name: CommonVoice Corpus 14.0 (English)
25
+ type: mozilla-foundation/common_voice_14.0
26
+ config: en
27
+ split: test
28
+ args:
29
+ language: en
30
+ metrics:
31
+ - name: Test WER
32
+ type: wer
33
+ value: '16.68'
34
  ---
35
+
36
+ <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
37
+ <br/><br/>
38
+
39
+ # wav2vec 2.0 with CTC trained on CommonVoice English (No LM)
40
+
41
+ This repository provides all the necessary tools to perform automatic speech
42
+ recognition from an end-to-end system pretrained on CommonVoice (English Language) within
43
+ SpeechBrain. For a better experience, we encourage you to learn more about
44
+ [SpeechBrain](https://speechbrain.github.io).
45
+
46
+ The performance of the model is the following:
47
+
48
+ | Release | Test CER | Test WER | GPUs |
49
+ |:-------------:|:--------------:|:--------------:| :--------:|
50
+ | 15-08-23 | 7.92 | 16.86 | 1xV100 32GB |
51
+
52
+ ## Pipeline description
53
+
54
+ This ASR system is composed of 2 different but linked blocks:
55
+ - Tokenizer (unigram) that transforms words into unigrams and trained with
56
+ the train transcriptions (train.tsv) of CommonVoice (en).
57
+ - Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model (wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on CommonVoice DE.
58
+ The obtained final acoustic representation is given to the CTC decoder.
59
+
60
+ The system is trained with recordings sampled at 16kHz (single channel).
61
+ The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
62
+
63
+ ## Install SpeechBrain
64
+
65
+ First of all, please install tranformers and SpeechBrain with the following command:
66
+
67
+ ```
68
+ pip install speechbrain transformers
69
+ ```
70
+
71
+ Please notice that we encourage you to read our tutorials and learn more about
72
+ [SpeechBrain](https://speechbrain.github.io).
73
+
74
+ ### Transcribing your own audio files (in English)
75
+
76
+ ```python
77
+ from speechbrain.pretrained import EncoderASR
78
+
79
+ asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-14-en", savedir="pretrained_models/asr-wav2vec2-commonvoice-14-en")
80
+ asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-14-en/example-en.wav")
81
+
82
+ ```
83
+ ### Inference on GPU
84
+ To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
85
+
86
+ ## Parallel Inference on a Batch
87
+ Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model.
88
+
89
+ ### Training
90
+ The model was trained with SpeechBrain.
91
+ To train it from scratch follow these steps:
92
+ 1. Clone SpeechBrain:
93
+ ```bash
94
+ git clone https://github.com/speechbrain/speechbrain/
95
+ ```
96
+ 2. Install it:
97
+ ```bash
98
+ cd speechbrain
99
+ pip install -r requirements.txt
100
+ pip install -e .
101
+ ```
102
+
103
+ 3. Run Training:
104
+ ```bash
105
+ cd recipes/CommonVoice/ASR/CTC/
106
+ python train_with_wav2vec.py hparams/train_en_with_wav2vec.yaml --data_folder=your_data_folder
107
+ ```
108
+
109
+ You can find our training results (models, logs, etc) [here](https://www.dropbox.com/sh/ch10cnbhf1faz3w/AACdHFG65LC6582H0Tet_glTa?dl=0).
110
+
111
+ ### Limitations
112
+ The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
113
+
114
+
115
+ # **About SpeechBrain**
116
+ - Website: https://speechbrain.github.io/
117
+ - Code: https://github.com/speechbrain/speechbrain/
118
+ - HuggingFace: https://huggingface.co/speechbrain/
119
+
120
+
121
+ # **Citing SpeechBrain**
122
+ Please, cite SpeechBrain if you use it for your research or business.
123
+
124
+ ```bibtex
125
+ @misc{speechbrain,
126
+ title={{SpeechBrain}: A General-Purpose Speech Toolkit},
127
+ author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
128
+ year={2021},
129
+ eprint={2106.04624},
130
+ archivePrefix={arXiv},
131
+ primaryClass={eess.AS},
132
+ note={arXiv:2106.04624}
133
+ }
134
+ ```
config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "speechbrain_interface": "EncoderASR",
3
+ "activation_dropout": 0.1,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "Wav2Vec2Model"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "conv_bias": true,
11
+ "conv_dim": [
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512
19
+ ],
20
+ "conv_kernel": [
21
+ 10,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 2,
27
+ 2
28
+ ],
29
+ "conv_stride": [
30
+ 5,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2
37
+ ],
38
+ "ctc_loss_reduction": "sum",
39
+ "ctc_zero_infinity": false,
40
+ "do_stable_layer_norm": true,
41
+ "eos_token_id": 2,
42
+ "feat_extract_activation": "gelu",
43
+ "feat_extract_dropout": 0.0,
44
+ "feat_extract_norm": "layer",
45
+ "feat_proj_dropout": 0.1,
46
+ "final_dropout": 0.1,
47
+ "gradient_checkpointing": false,
48
+ "hidden_act": "gelu",
49
+ "hidden_dropout": 0.1,
50
+ "hidden_dropout_prob": 0.1,
51
+ "hidden_size": 1024,
52
+ "initializer_range": 0.02,
53
+ "intermediate_size": 4096,
54
+ "layer_norm_eps": 1e-05,
55
+ "layerdrop": 0.1,
56
+ "mask_feature_length": 10,
57
+ "mask_feature_prob": 0.0,
58
+ "mask_time_length": 10,
59
+ "mask_time_prob": 0.05,
60
+ "model_type": "wav2vec2",
61
+ "num_attention_heads": 16,
62
+ "num_conv_pos_embedding_groups": 16,
63
+ "num_conv_pos_embeddings": 128,
64
+ "num_feat_extract_layers": 7,
65
+ "num_hidden_layers": 24,
66
+ "pad_token_id": 0,
67
+ "transformers_version": "4.21.1",
68
+ "vocab_size": 32
69
+ }
hyperparams.yaml ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ################################
2
+ # Model: wav2vec2 + DNN + CTC
3
+ # Augmentation: SpecAugment
4
+ # Authors:
5
+ # Sung-Lin Yeh 2021
6
+ # Pooneh Mousavi 2023
7
+ # ################################
8
+
9
+ # BPE parameters
10
+ token_type: unigram # ["unigram", "bpe", "char"]
11
+ character_coverage: 1.0
12
+
13
+ # Model parameters
14
+ # activation: !name:torch.nn.LeakyReLU
15
+ dnn_neurons: 1024
16
+ wav2vec_output_dim: 1024
17
+ dropout: 0.15
18
+
19
+ sample_rate: 16000
20
+
21
+ wav2vec2_hub: facebook/wav2vec2-large-xlsr-53
22
+
23
+ # Outputs
24
+ output_neurons: 1000 # BPE size, index(blank/eos/bos) = 0
25
+
26
+ # Decoding parameters
27
+ # Be sure that the bos and eos index match with the BPEs ones
28
+ blank_index: 0
29
+ bos_index: 1
30
+ eos_index: 2
31
+
32
+ enc: !new:speechbrain.nnet.containers.Sequential
33
+ input_shape: [null, null, !ref <wav2vec_output_dim>]
34
+ linear1: !name:speechbrain.nnet.linear.Linear
35
+ n_neurons: !ref <dnn_neurons>
36
+ bias: True
37
+ bn1: !name:speechbrain.nnet.normalization.BatchNorm1d
38
+ activation: !new:torch.nn.LeakyReLU
39
+ drop: !new:torch.nn.Dropout
40
+ p: !ref <dropout>
41
+ linear2: !name:speechbrain.nnet.linear.Linear
42
+ n_neurons: !ref <dnn_neurons>
43
+ bias: True
44
+ bn2: !name:speechbrain.nnet.normalization.BatchNorm1d
45
+ activation2: !new:torch.nn.LeakyReLU
46
+ drop2: !new:torch.nn.Dropout
47
+ p: !ref <dropout>
48
+ linear3: !name:speechbrain.nnet.linear.Linear
49
+ n_neurons: !ref <dnn_neurons>
50
+ bias: True
51
+ bn3: !name:speechbrain.nnet.normalization.BatchNorm1d
52
+ activation3: !new:torch.nn.LeakyReLU
53
+
54
+ wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
55
+ source: !ref <wav2vec2_hub>
56
+ output_norm: True
57
+ freeze: True
58
+ save_path: wav2vec2_checkpoint
59
+
60
+ ctc_lin: !new:speechbrain.nnet.linear.Linear
61
+ input_size: !ref <dnn_neurons>
62
+ n_neurons: !ref <output_neurons>
63
+
64
+ log_softmax: !new:speechbrain.nnet.activations.Softmax
65
+ apply_log: True
66
+
67
+ ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
68
+ blank_index: !ref <blank_index>
69
+
70
+ asr_model: !new:torch.nn.ModuleList
71
+ - [!ref <enc>, !ref <ctc_lin>]
72
+
73
+ tokenizer: !new:sentencepiece.SentencePieceProcessor
74
+
75
+ encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
76
+ wav2vec2: !ref <wav2vec2>
77
+ enc: !ref <enc>
78
+ ctc_lin: !ref <ctc_lin>
79
+
80
+ modules:
81
+ encoder: !ref <encoder>
82
+
83
+ decoding_function: !name:speechbrain.decoders.ctc_greedy_decode
84
+ blank_id: !ref <blank_index>
85
+
86
+ pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
87
+ loadables:
88
+ wav2vec2: !ref <wav2vec2>
89
+ asr: !ref <asr_model>
90
+ tokenizer: !ref <tokenizer>
preprocessor_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_size": 1,
4
+ "padding_side": "right",
5
+ "padding_value": 0.0,
6
+ "return_attention_mask": true,
7
+ "sampling_rate": 16000
8
+ }