tts-fastspeech2-ljspeech / hyperparams.yaml
Mirco's picture
upload model
ca5dd3d
raw
history blame
2.34 kB
# ################################
# Model: Fastspeech2 for TTS
# Authors: Sathvik Udupa, Yingzhi Wang
# ################################
n_symbols: 62 #fixed deppending on symbols in textToSequence
n_mel_channels: 80
padding_idx: 0
# Encoder parameters
enc_num_layers: 4
enc_num_head: 2
enc_d_model: 384
enc_ffn_dim: 1024
enc_k_dim: 384
enc_v_dim: 384
enc_dropout: 0.1
# Decoder parameters
dec_num_layers: 4
dec_num_head: 2
dec_d_model: 384
dec_ffn_dim: 1024
dec_k_dim: 384
dec_v_dim: 384
dec_dropout: 0.1
# common
normalize_before: True
ffn_type: 1dcnn #1dcnn or ffn
dur_pred_kernel_size: 3
pitch_pred_kernel_size: 3
energy_pred_kernel_size: 3
model: !new:speechbrain.lobes.models.FastSpeech2.FastSpeech2
enc_num_layers: !ref <enc_num_layers>
enc_num_head: !ref <enc_num_head>
enc_d_model: !ref <enc_d_model>
enc_ffn_dim: !ref <enc_ffn_dim>
enc_k_dim: !ref <enc_k_dim>
enc_v_dim: !ref <enc_v_dim>
enc_dropout: !ref <enc_dropout>
dec_num_layers: !ref <dec_num_layers>
dec_num_head: !ref <dec_num_head>
dec_d_model: !ref <dec_d_model>
dec_ffn_dim: !ref <dec_ffn_dim>
dec_k_dim: !ref <dec_k_dim>
dec_v_dim: !ref <dec_v_dim>
dec_dropout: !ref <dec_dropout>
normalize_before: !ref <normalize_before>
ffn_type: !ref <ffn_type>
n_char: !ref <n_symbols>
n_mels: !ref <n_mel_channels>
padding_idx: !ref <padding_idx>
dur_pred_kernel_size: !ref <dur_pred_kernel_size>
pitch_pred_kernel_size: !ref <pitch_pred_kernel_size>
energy_pred_kernel_size: !ref <energy_pred_kernel_size>
# The lexicon file must be the same used for training
lexicon:
- "t"
- "?"
- "q"
- "j"
- "g"
- "p"
- "x"
- "("
- "é"
- "e"
- "z"
- ","
- "o"
- "a"
- "m"
- "n"
- "u"
- "d"
- ":"
- "w"
- "à"
- "“"
- "."
- "”"
- "’"
- "["
- "v"
- "h"
- " "
- "ê"
- "b"
- "'"
- "\""
- "f"
- "â"
- "!"
- ";"
- "l"
- "r"
- "è"
- "i"
- "]"
- "s"
- "k"
- "y"
- ")"
- "c"
- "ü"
- "-"
input_encoder: !new:speechbrain.dataio.encoder.TextEncoder
modules:
model: !ref <model>
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
model: !ref <model>