|
from typing import Dict, List, Any |
|
import torch |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
model_id = "openai/whisper-large-v3" |
|
self.model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True |
|
) |
|
self.model.to(device) |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
self.pipeline = pipeline( |
|
"automatic-speech-recognition", |
|
model=self.model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
max_new_tokens=128, |
|
chunk_length_s=30, |
|
batch_size=16, |
|
return_timestamps=True, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
) |
|
|
|
|
|
def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : |
|
- "label": A string representing what the label/class is. There can be multiple labels. |
|
- "score": A score between 0 and 1 describing how confident the model is for this label/class. |
|
""" |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
|
|
if parameters is not None: |
|
result = self.pipeline(inputs, return_timestamps=True, **parameters) |
|
else: |
|
result = self.pipeline(inputs, return_timestamps=True, generate_kwargs={"task": "translate"}) |
|
|
|
return {"chunks": result["chunks"]} |