spellingdragon's picture
Update handler.py
ff458a6
raw
history blame
2.09 kB
import torch
from transformers.pipelines.audio_utils import ffmpeg_read
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
class EndpointHandler():
def __init__(self, path=""):
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
self.pipeline = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
- "label": A string representing what the label/class is. There can be multiple labels.
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
"""
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
# pass inputs with all kwargs in data
if parameters is not None:
result = self.pipeline(inputs, return_timestamps=True, **parameters)
else:
result = self.pipeline(inputs, return_timestamps=True, generate_kwargs={"task": "translate"})
# postprocess the prediction
return {"chunks": result["chunks"]}