spellingdragon
commited on
Commit
•
694416b
1
Parent(s):
90adbf4
Create handler.py
Browse files- handler.py +51 -0
handler.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
3 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
class EndpointHandler():
|
7 |
+
def __init__(self, path=""):
|
8 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
10 |
+
model_id = "openai/whisper-large-v3"
|
11 |
+
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
12 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
13 |
+
)
|
14 |
+
model.to(device)
|
15 |
+
|
16 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
17 |
+
|
18 |
+
self.pipeline = pipeline(
|
19 |
+
"automatic-speech-recognition",
|
20 |
+
model=model,
|
21 |
+
tokenizer=processor.tokenizer,
|
22 |
+
feature_extractor=processor.feature_extractor,
|
23 |
+
max_new_tokens=128,
|
24 |
+
chunk_length_s=30,
|
25 |
+
batch_size=16,
|
26 |
+
return_timestamps=True,
|
27 |
+
torch_dtype=torch_dtype,
|
28 |
+
device=device,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
33 |
+
"""
|
34 |
+
Args:
|
35 |
+
data (:obj:):
|
36 |
+
includes the input data and the parameters for the inference.
|
37 |
+
Return:
|
38 |
+
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
|
39 |
+
- "label": A string representing what the label/class is. There can be multiple labels.
|
40 |
+
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
41 |
+
"""
|
42 |
+
inputs = data.pop("inputs", data)
|
43 |
+
parameters = data.pop("parameters", None)
|
44 |
+
|
45 |
+
# pass inputs with all kwargs in data
|
46 |
+
if parameters is not None:
|
47 |
+
result = self.pipeline(inputs, return_timestamps=True, **parameters)
|
48 |
+
else:
|
49 |
+
result = self.pipeline(inputs, return_timestamps=True, generate_kwargs={"task": "translate"})
|
50 |
+
# postprocess the prediction
|
51 |
+
return {"chunks": result["chunks"]}
|