from typing import Dict, List, Any import torch from transformers.pipelines.audio_utils import ffmpeg_read from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline class EndpointHandler(): def __init__(self, path=""): device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3" self.model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) self.pipeline = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=30, batch_size=16, return_timestamps=True, torch_dtype=torch_dtype, device=device, ) def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) # pass inputs with all kwargs in data if parameters is not None: result = self.pipeline(inputs, return_timestamps=True, **parameters) else: result = self.pipeline(inputs, return_timestamps=True, generate_kwargs={"task": "translate"}) # postprocess the prediction return {"chunks": result["chunks"]}