bobachicken/Llama-3.2-1B-Alpaca

The Model bobachicken/Llama-3.2-1B-Alpaca was finetuned using the Dataset bobachicken/alpaca-split , a split version of the Alpaca Dataset tatsu-lab/alpaca using the MLX Framework(https://github.com/ml-explore) developed by Apple. The fine-tuning process was conducted using DORA(https://developer.nvidia.com/blog/introducing-dora-a-high-performing-alternative-to-lora-for-fine-tuning/) for a total of 2000 iterations.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("bobachicken/Llama-3.2-1B-Alpaca")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Downloads last month
15
Safetensors
Model size
1.24B params
Tensor type
BF16
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for spicychickennoodles/Llama-3.2-1B-Alpaca

Finetuned
(171)
this model