update model card README.md
Browse files
README.md
CHANGED
@@ -1,35 +1,10 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- ne
|
4 |
license: apache-2.0
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
-
- automatic-speech-recognition
|
8 |
-
- speech
|
9 |
-
- openslr
|
10 |
-
- nepali
|
11 |
-
datasets:
|
12 |
-
- spktsagar/openslr-nepali-asr-cleaned
|
13 |
-
metrics:
|
14 |
-
- wer
|
15 |
model-index:
|
16 |
- name: wav2vec2-large-xls-r-300m-nepali-openslr
|
17 |
-
results:
|
18 |
-
- task:
|
19 |
-
type: automatic-speech-recognition
|
20 |
-
name: Nepali Speech Recognition
|
21 |
-
dataset:
|
22 |
-
type: spktsagar/openslr-nepali-asr-cleaned
|
23 |
-
name: OpenSLR Nepali ASR
|
24 |
-
config: original
|
25 |
-
split: train
|
26 |
-
metrics:
|
27 |
-
- type: were
|
28 |
-
value: 23.52
|
29 |
-
name: Test WER
|
30 |
-
verified: false
|
31 |
-
|
32 |
-
|
33 |
---
|
34 |
|
35 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -37,42 +12,29 @@ should probably proofread and complete it, then remove this comment. -->
|
|
37 |
|
38 |
# wav2vec2-large-xls-r-300m-nepali-openslr
|
39 |
|
40 |
-
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an
|
41 |
It achieves the following results on the evaluation set:
|
42 |
-
- eval_loss: 0.
|
43 |
-
- eval_wer: 0.
|
44 |
-
- eval_runtime:
|
45 |
-
- eval_samples_per_second: 36.
|
46 |
-
- eval_steps_per_second: 4.
|
47 |
-
- epoch:
|
48 |
-
- step:
|
49 |
|
50 |
## Model description
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
## How to use?
|
55 |
-
1. Install transformers and librosa
|
56 |
-
```
|
57 |
-
pip install librosa, transformers
|
58 |
-
```
|
59 |
-
2. Run the following code which loads your audio file, preprocessor, models, and returns your prediction
|
60 |
-
```python
|
61 |
-
import librosa
|
62 |
-
from transformers import pipeline
|
63 |
-
|
64 |
-
audio, sample_rate = librosa.load("<path to your audio file>", sr=16000)
|
65 |
-
recognizer = pipeline("automatic-speech-recognition", model="spktsagar/wav2vec2-large-xls-r-300m-nepali-openslr")
|
66 |
-
prediction = recognizer(audio)
|
67 |
-
```
|
68 |
|
69 |
## Intended uses & limitations
|
70 |
|
71 |
-
|
|
|
|
|
72 |
|
73 |
-
|
74 |
|
75 |
-
|
76 |
|
77 |
### Training hyperparameters
|
78 |
|
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
model-index:
|
6 |
- name: wav2vec2-large-xls-r-300m-nepali-openslr
|
7 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
12 |
|
13 |
# wav2vec2-large-xls-r-300m-nepali-openslr
|
14 |
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- eval_loss: 0.1767
|
18 |
+
- eval_wer: 0.2127
|
19 |
+
- eval_runtime: 595.3962
|
20 |
+
- eval_samples_per_second: 36.273
|
21 |
+
- eval_steps_per_second: 4.535
|
22 |
+
- epoch: 6.07
|
23 |
+
- step: 23200
|
24 |
|
25 |
## Model description
|
26 |
|
27 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
## Intended uses & limitations
|
30 |
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
|
35 |
+
More information needed
|
36 |
|
37 |
+
## Training procedure
|
38 |
|
39 |
### Training hyperparameters
|
40 |
|