Leslie123 commited on
Commit
ce0acd8
1 Parent(s): 4dd7c1f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -29
README.md CHANGED
@@ -5,45 +5,37 @@ tags:
5
  - sentence-transformers
6
  - text-classification
7
  pipeline_tag: text-classification
 
8
  ---
9
 
10
- # /var/folders/05/wb3jgwtj5v967cjkdcnz4t700000gn/T/tmpe2s9igdk/splore/navigational-vs-transactional-vs-informational-classifier
11
 
12
- This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
13
 
14
- 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
15
- 2. Training a classification head with features from the fine-tuned Sentence Transformer.
 
 
16
 
17
  ## Usage
18
 
19
- To use this model for inference, first install the SetFit library:
 
20
 
21
- ```bash
22
- python -m pip install setfit
 
23
  ```
24
 
25
- You can then run inference as follows:
26
 
27
- ```python
28
- from setfit import SetFitModel
29
 
30
- # Download from Hub and run inference
31
- model = SetFitModel.from_pretrained("/var/folders/05/wb3jgwtj5v967cjkdcnz4t700000gn/T/tmpe2s9igdk/splore/navigational-vs-transactional-vs-informational-classifier")
32
- # Run inference
33
- preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
34
- ```
35
 
36
- ## BibTeX entry and citation info
37
-
38
- ```bibtex
39
- @article{https://doi.org/10.48550/arxiv.2209.11055,
40
- doi = {10.48550/ARXIV.2209.11055},
41
- url = {https://arxiv.org/abs/2209.11055},
42
- author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
43
- keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
44
- title = {Efficient Few-Shot Learning Without Prompts},
45
- publisher = {arXiv},
46
- year = {2022},
47
- copyright = {Creative Commons Attribution 4.0 International}
48
- }
49
- ```
 
5
  - sentence-transformers
6
  - text-classification
7
  pipeline_tag: text-classification
8
+ library_name: sentence-transformers
9
  ---
10
 
11
+ # splore/navigational-vs-transactional-vs-informational-classifier
12
 
13
+ Query classification model trained using Metaflow.
14
 
15
+ ## Query types
16
+ 1. Navigational
17
+ 2. Transactional
18
+ 3. Informational
19
 
20
  ## Usage
21
 
22
+ ```python
23
+ from setfit import SetFitModel
24
 
25
+ model = SetFitModel.from_pretrained("splore/navigational-vs-transactional-vs-informational-classifier")
26
+ predections = model.predict(["What type of query is this?"])
27
+ probabilities = model.predict_proba(["Predictions with probabilities"])
28
  ```
29
 
30
+ ## Evaluation
31
 
32
+ Tests have only been done on a small dataset of 40 manually created queries.
 
33
 
34
+ |metric |value|
35
+ |-----------|-----|
36
+ |accuracy |0.942|
37
+ |exact match|0.875|
 
38
 
39
+ ![ROC graph](roc.png)
40
+
41
+ ![confusion matrix](confusion.png)