spolivin commited on
Commit
b2b0ecb
1 Parent(s): babad89

End of training

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - f1
8
+ model-index:
9
+ - name: alz-mri-vit
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # alz-mri-vit
17
+
18
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.1875
21
+ - F1: 0.9309
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0002
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 16
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 64
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 30
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
55
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
56
+ | 1.1218 | 1.0 | 64 | 0.9419 | 0.5742 |
57
+ | 0.94 | 2.0 | 128 | 0.9054 | 0.6029 |
58
+ | 0.9123 | 3.0 | 192 | 0.9019 | 0.5262 |
59
+ | 0.8625 | 4.0 | 256 | 0.8465 | 0.6029 |
60
+ | 0.8104 | 5.0 | 320 | 0.7810 | 0.6319 |
61
+ | 0.7244 | 6.0 | 384 | 0.7278 | 0.7037 |
62
+ | 0.697 | 7.0 | 448 | 0.6300 | 0.7480 |
63
+ | 0.5865 | 8.0 | 512 | 0.5659 | 0.7662 |
64
+ | 0.5199 | 9.0 | 576 | 0.5445 | 0.7721 |
65
+ | 0.4734 | 10.0 | 640 | 0.6750 | 0.7185 |
66
+ | 0.4399 | 11.0 | 704 | 0.4893 | 0.8274 |
67
+ | 0.3817 | 12.0 | 768 | 0.5578 | 0.7844 |
68
+ | 0.3318 | 13.0 | 832 | 0.4699 | 0.8228 |
69
+ | 0.3096 | 14.0 | 896 | 0.4460 | 0.8399 |
70
+ | 0.2787 | 15.0 | 960 | 0.4105 | 0.8399 |
71
+ | 0.2517 | 16.0 | 1024 | 0.3488 | 0.8578 |
72
+ | 0.2346 | 17.0 | 1088 | 0.3877 | 0.8773 |
73
+ | 0.2286 | 18.0 | 1152 | 0.3420 | 0.8575 |
74
+ | 0.1914 | 19.0 | 1216 | 0.4123 | 0.8682 |
75
+ | 0.1844 | 20.0 | 1280 | 0.2894 | 0.8913 |
76
+ | 0.173 | 21.0 | 1344 | 0.3197 | 0.8887 |
77
+ | 0.1687 | 22.0 | 1408 | 0.2626 | 0.9075 |
78
+ | 0.1601 | 23.0 | 1472 | 0.2951 | 0.9068 |
79
+ | 0.1466 | 24.0 | 1536 | 0.2666 | 0.9049 |
80
+ | 0.1468 | 25.0 | 1600 | 0.2136 | 0.9103 |
81
+ | 0.1226 | 26.0 | 1664 | 0.2387 | 0.9127 |
82
+ | 0.1186 | 27.0 | 1728 | 0.2131 | 0.9271 |
83
+ | 0.0951 | 28.0 | 1792 | 0.2520 | 0.9130 |
84
+ | 0.1049 | 29.0 | 1856 | 0.2096 | 0.9259 |
85
+ | 0.0936 | 30.0 | 1920 | 0.1875 | 0.9309 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.35.2
91
+ - Pytorch 2.1.0+cu121
92
+ - Datasets 2.16.1
93
+ - Tokenizers 0.15.0