End of training
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224-in21k
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
model-index:
|
9 |
+
- name: alz-mri-vit
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# alz-mri-vit
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.1875
|
21 |
+
- F1: 0.9309
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0002
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 16
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 64
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 30
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
56 |
+
| 1.1218 | 1.0 | 64 | 0.9419 | 0.5742 |
|
57 |
+
| 0.94 | 2.0 | 128 | 0.9054 | 0.6029 |
|
58 |
+
| 0.9123 | 3.0 | 192 | 0.9019 | 0.5262 |
|
59 |
+
| 0.8625 | 4.0 | 256 | 0.8465 | 0.6029 |
|
60 |
+
| 0.8104 | 5.0 | 320 | 0.7810 | 0.6319 |
|
61 |
+
| 0.7244 | 6.0 | 384 | 0.7278 | 0.7037 |
|
62 |
+
| 0.697 | 7.0 | 448 | 0.6300 | 0.7480 |
|
63 |
+
| 0.5865 | 8.0 | 512 | 0.5659 | 0.7662 |
|
64 |
+
| 0.5199 | 9.0 | 576 | 0.5445 | 0.7721 |
|
65 |
+
| 0.4734 | 10.0 | 640 | 0.6750 | 0.7185 |
|
66 |
+
| 0.4399 | 11.0 | 704 | 0.4893 | 0.8274 |
|
67 |
+
| 0.3817 | 12.0 | 768 | 0.5578 | 0.7844 |
|
68 |
+
| 0.3318 | 13.0 | 832 | 0.4699 | 0.8228 |
|
69 |
+
| 0.3096 | 14.0 | 896 | 0.4460 | 0.8399 |
|
70 |
+
| 0.2787 | 15.0 | 960 | 0.4105 | 0.8399 |
|
71 |
+
| 0.2517 | 16.0 | 1024 | 0.3488 | 0.8578 |
|
72 |
+
| 0.2346 | 17.0 | 1088 | 0.3877 | 0.8773 |
|
73 |
+
| 0.2286 | 18.0 | 1152 | 0.3420 | 0.8575 |
|
74 |
+
| 0.1914 | 19.0 | 1216 | 0.4123 | 0.8682 |
|
75 |
+
| 0.1844 | 20.0 | 1280 | 0.2894 | 0.8913 |
|
76 |
+
| 0.173 | 21.0 | 1344 | 0.3197 | 0.8887 |
|
77 |
+
| 0.1687 | 22.0 | 1408 | 0.2626 | 0.9075 |
|
78 |
+
| 0.1601 | 23.0 | 1472 | 0.2951 | 0.9068 |
|
79 |
+
| 0.1466 | 24.0 | 1536 | 0.2666 | 0.9049 |
|
80 |
+
| 0.1468 | 25.0 | 1600 | 0.2136 | 0.9103 |
|
81 |
+
| 0.1226 | 26.0 | 1664 | 0.2387 | 0.9127 |
|
82 |
+
| 0.1186 | 27.0 | 1728 | 0.2131 | 0.9271 |
|
83 |
+
| 0.0951 | 28.0 | 1792 | 0.2520 | 0.9130 |
|
84 |
+
| 0.1049 | 29.0 | 1856 | 0.2096 | 0.9259 |
|
85 |
+
| 0.0936 | 30.0 | 1920 | 0.1875 | 0.9309 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.35.2
|
91 |
+
- Pytorch 2.1.0+cu121
|
92 |
+
- Datasets 2.16.1
|
93 |
+
- Tokenizers 0.15.0
|