import torch from typing import Dict, List, Any import torch.nn as nn from transformers import GPT2LMHeadModel, GPT2Config, GPT2Tokenizer, PreTrainedModel from transformers.modeling_outputs import CausalLMOutput import torch.nn as nn import torch import torch.nn.functional as F # # get dtype # dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 class CustomGPT2Model(PreTrainedModel): def __init__(self, config): super(CustomGPT2Model, self).__init__(config) self.gpt2 = GPT2LMHeadModel.from_pretrained('gpt2-medium') # Create an MLP layer to transform the ada-002 embedding to the GPT-2 hidden size self.mlp = nn.Sequential( nn.Linear(1536, 768), # Adjust the hidden layer size as necessary nn.ReLU(), nn.Linear(768, config.n_embd) # Adjust the output size to match GPT-2 embedding size ) def forward(self, inputs=None, ada_embedding=None, decoded_tkns=None, labels=None): emb = self.mlp(ada_embedding) emb = emb.unsqueeze(1) if decoded_tkns is not None: # Add the "encoded:" prefix, ada-002 embedding, "decoded:" prefix, and the decoded token decoded_tkns = torch.cat([emb, self.gpt2.transformer.wte(decoded_tkns)], dim=1) else: decoded_tkns = emb # Create the position ids position_ids = torch.arange(0, decoded_tkns.size(1), dtype=torch.long).unsqueeze(0).to(emb.device) # Forward the embeddings through the GPT-2 model with the correct position ids outputs = self.gpt2(inputs_embeds=decoded_tkns, position_ids=position_ids) logits = outputs.logits loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1)) return CausalLMOutput(loss, logits, outputs.hidden_states) class EndpointHandler: def __init__(self, path=""): # load the model # Load the GPT-2 configuration self.config = GPT2Config.from_pretrained('gpt2-medium') # Create the custom GPT-2 model and load the trained weights self.model = CustomGPT2Model.from_pretrained(path, config=self.config) # Load the tokenizer self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium') def __call__(self, data: Any) -> List[List[Dict[str, float]]]: embedding = data.pop("embedding", None) ada_embedding = torch.tensor(embedding).unsqueeze(0) max_length=200 with torch.no_grad(): outputs = self.model(ada_embedding=ada_embedding, decoded_tkns=None) decoded_tkns = outputs.logits.argmax(dim=-1) for _ in range(max_length): with torch.no_grad(): outputs = self.model(ada_embedding=ada_embedding, decoded_tkns=decoded_tkns) # Get the most likely next token, sampled from top k logits = outputs.logits[:, -1] top_k_logits, top_k_indices = torch.topk(logits, k = 5) next_token = torch.multinomial(F.softmax(top_k_logits, dim=-1), num_samples=1) next_token = top_k_indices.gather(dim=1, index=next_token) if next_token[0].item() == self.tokenizer.eos_token_id: break decoded_tkns = torch.cat((decoded_tkns, next_token), dim=1) # Convert the tensor of token IDs to a list of token IDs token_ids = decoded_tkns[0].cpu().numpy().tolist() # Decode the token IDs back to a string output_text = self.tokenizer.decode(token_ids, skip_special_tokens=True) return output_text