--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: my_awesome_billsum_model results: [] --- # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0467 - Rouge1: 0.7832 - Rouge2: 0.692 - Rougel: 0.781 - Rougelsum: 0.7805 - Gen Len: 11.6071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 56 | 4.9294 | 0.0 | 0.0 | 0.0 | 0.0 | 16.558 | | No log | 2.0 | 112 | 2.2288 | 0.0 | 0.0 | 0.0 | 0.0 | 13.5357 | | No log | 3.0 | 168 | 0.4763 | 0.0045 | 0.0045 | 0.0045 | 0.0045 | 10.6518 | | No log | 4.0 | 224 | 0.1138 | 0.7232 | 0.6205 | 0.7245 | 0.7236 | 11.5893 | | No log | 5.0 | 280 | 0.0654 | 0.7417 | 0.6339 | 0.7417 | 0.7402 | 11.6607 | | No log | 6.0 | 336 | 0.0587 | 0.7321 | 0.6205 | 0.7321 | 0.7309 | 11.5938 | | No log | 7.0 | 392 | 0.0552 | 0.7496 | 0.6473 | 0.7491 | 0.7491 | 11.625 | | No log | 8.0 | 448 | 0.0533 | 0.7714 | 0.6786 | 0.7714 | 0.7709 | 11.6562 | | 1.6431 | 9.0 | 504 | 0.0518 | 0.781 | 0.692 | 0.7832 | 0.7805 | 11.6161 | | 1.6431 | 10.0 | 560 | 0.0505 | 0.764 | 0.6652 | 0.7632 | 0.7614 | 11.6607 | | 1.6431 | 11.0 | 616 | 0.0494 | 0.7778 | 0.6875 | 0.78 | 0.7773 | 11.6116 | | 1.6431 | 12.0 | 672 | 0.0488 | 0.7778 | 0.6875 | 0.78 | 0.7773 | 11.6116 | | 1.6431 | 13.0 | 728 | 0.0483 | 0.781 | 0.692 | 0.7815 | 0.7805 | 11.6161 | | 1.6431 | 14.0 | 784 | 0.0479 | 0.781 | 0.692 | 0.7815 | 0.7805 | 11.6071 | | 1.6431 | 15.0 | 840 | 0.0475 | 0.7852 | 0.6964 | 0.7839 | 0.7842 | 11.6205 | | 1.6431 | 16.0 | 896 | 0.0471 | 0.7812 | 0.692 | 0.781 | 0.7805 | 11.5982 | | 1.6431 | 17.0 | 952 | 0.0469 | 0.7884 | 0.7009 | 0.7879 | 0.7869 | 11.625 | | 0.062 | 18.0 | 1008 | 0.0468 | 0.7832 | 0.692 | 0.781 | 0.7805 | 11.6071 | | 0.062 | 19.0 | 1064 | 0.0467 | 0.7864 | 0.6964 | 0.7839 | 0.7837 | 11.6027 | | 0.062 | 20.0 | 1120 | 0.0467 | 0.7832 | 0.692 | 0.781 | 0.7805 | 11.6071 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0