File size: 28,916 Bytes
a22076c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
---
base_model: srikarvar/fine_tuned_model_5
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:560
- loss:OnlineContrastiveLoss
widget:
- source_sentence: The `Garage` class has a `to_services` method which is used to
    transform tasks into a list of `ServiceRecord` objects that are scheduled.
  sentences:
  - The `to_services` method in the Garage class is used to convert Garage tasks to
    a list of scheduled `ServiceRecord` objects.
  - It returns a `Recipe` for the specified serving size.
  - The AI community is a group of individuals who collaborate on models, datasets,
    and tools to advance artificial intelligence research.
- source_sentence: The main version of the guide contains the INSTALLATION page. Click
    the link to be directed there.
  sentences:
  - You can bake bread by following the Bake bread tutorial.
  - The base class for documents generated from a data stream is StreamBasedBuilder.
  - You can find the INSTALLATION page in the main version of the guide. Click on
    the provided link to redirect to the main version.
- source_sentence: A major distinction between a ProductList and an InventoryList
    is that a ProductList allows for random access to the items, while an InventoryList
    updates gradually as it is navigated.
  sentences:
  - The how-to guides for the platform include Setup, Processing, Streaming, TensorFlow
    integration, PyTorch integration, Cache management, Cloud storage, Search index,
    Analytics, and Data Pipelines.
  - 'Yes, there is a tutorial for analyzing stock market data. You can find it at
    the link provided: /docs/stocks/v2.10.0/data_analysis.'
  - The main difference between a ProductList and an InventoryList is that a ProductList
    provides random access to the items, while an InventoryList updates progressively
    as you browse the list.
- source_sentence: ImageFolder is a dataset builder that eliminates the need for coding
    to quickly load a dataset with thousands of image files. It will automatically
    incorporate any extra data such as resolution, format, or tags, provided that
    it is included in a metadata file (metadata.csv/metadata.jsonl).
  sentences:
  - The function `calc_and_sum` returns the calculated value and sum.
  - Some examples of supported network drives are Network File System (NFS), Server
    Message Block (SMB), and WebDAV.
  - ImageFolder is a dataset builder designed to quickly load an image dataset with
    several thousand image files without requiring you to write any code. It automatically
    loads any additional information about your dataset, such as image resolution,
    format, or image tags, as long as you include this information in a metadata file
    (metadata.csv/metadata.jsonl).
- source_sentence: The `num_services` method gives the quantity of services in the
    garage.
  sentences:
  - A signature in the sales database is a unique identifier for a transaction that
    is updated every time a change is made. It is computed by combining the previous
    signature and a hash of the latest update applied.
  - The `num_services` method returns the number of services in the garage.
  - It returns the number of entries in the dataset.
model-index:
- name: SentenceTransformer based on srikarvar/fine_tuned_model_5
  results:
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: pair class dev
      type: pair-class-dev
    metrics:
    - type: cosine_accuracy
      value: 0.9821428571428571
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.9922685623168945
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.9909909909909909
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.9922685623168945
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 1.0
      name: Cosine Precision
    - type: cosine_recall
      value: 0.9821428571428571
      name: Cosine Recall
    - type: cosine_ap
      value: 1.0
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.9821428571428571
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 0.9922685623168945
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.9909909909909909
      name: Dot F1
    - type: dot_f1_threshold
      value: 0.9922685623168945
      name: Dot F1 Threshold
    - type: dot_precision
      value: 1.0
      name: Dot Precision
    - type: dot_recall
      value: 0.9821428571428571
      name: Dot Recall
    - type: dot_ap
      value: 1.0
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.9821428571428571
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 1.8805665969848633
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.9909909909909909
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 1.8805665969848633
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 1.0
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.9821428571428571
      name: Manhattan Recall
    - type: manhattan_ap
      value: 1.0
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.9821428571428571
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 0.12164457887411118
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.9909909909909909
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 0.12164457887411118
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 1.0
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.9821428571428571
      name: Euclidean Recall
    - type: euclidean_ap
      value: 1.0
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.9821428571428571
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 1.8805665969848633
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.9909909909909909
      name: Max F1
    - type: max_f1_threshold
      value: 1.8805665969848633
      name: Max F1 Threshold
    - type: max_precision
      value: 1.0
      name: Max Precision
    - type: max_recall
      value: 0.9821428571428571
      name: Max Recall
    - type: max_ap
      value: 1.0
      name: Max Ap
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: pair class test
      type: pair-class-test
    metrics:
    - type: cosine_accuracy
      value: 0.9821428571428571
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.9922685623168945
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.9909909909909909
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.9922685623168945
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 1.0
      name: Cosine Precision
    - type: cosine_recall
      value: 0.9821428571428571
      name: Cosine Recall
    - type: cosine_ap
      value: 1.0
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.9821428571428571
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 0.9922685623168945
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.9909909909909909
      name: Dot F1
    - type: dot_f1_threshold
      value: 0.9922685623168945
      name: Dot F1 Threshold
    - type: dot_precision
      value: 1.0
      name: Dot Precision
    - type: dot_recall
      value: 0.9821428571428571
      name: Dot Recall
    - type: dot_ap
      value: 1.0
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.9821428571428571
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 1.8805665969848633
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.9909909909909909
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 1.8805665969848633
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 1.0
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.9821428571428571
      name: Manhattan Recall
    - type: manhattan_ap
      value: 1.0
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.9821428571428571
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 0.12164457887411118
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.9909909909909909
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 0.12164457887411118
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 1.0
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.9821428571428571
      name: Euclidean Recall
    - type: euclidean_ap
      value: 1.0
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.9821428571428571
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 1.8805665969848633
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.9909909909909909
      name: Max F1
    - type: max_f1_threshold
      value: 1.8805665969848633
      name: Max F1 Threshold
    - type: max_precision
      value: 1.0
      name: Max Precision
    - type: max_recall
      value: 0.9821428571428571
      name: Max Recall
    - type: max_ap
      value: 1.0
      name: Max Ap
---

# SentenceTransformer based on srikarvar/fine_tuned_model_5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [srikarvar/fine_tuned_model_5](https://huggingface.co/srikarvar/fine_tuned_model_5) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [srikarvar/fine_tuned_model_5](https://huggingface.co/srikarvar/fine_tuned_model_5) <!-- at revision 4e4dc22ad09f760a0a35c55d14d2f89ebe2d2ff2 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_12")
# Run inference
sentences = [
    'The `num_services` method gives the quantity of services in the garage.',
    'The `num_services` method returns the number of services in the garage.',
    'It returns the number of entries in the dataset.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Binary Classification
* Dataset: `pair-class-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value   |
|:-----------------------------|:--------|
| cosine_accuracy              | 0.9821  |
| cosine_accuracy_threshold    | 0.9923  |
| cosine_f1                    | 0.991   |
| cosine_f1_threshold          | 0.9923  |
| cosine_precision             | 1.0     |
| cosine_recall                | 0.9821  |
| cosine_ap                    | 1.0     |
| dot_accuracy                 | 0.9821  |
| dot_accuracy_threshold       | 0.9923  |
| dot_f1                       | 0.991   |
| dot_f1_threshold             | 0.9923  |
| dot_precision                | 1.0     |
| dot_recall                   | 0.9821  |
| dot_ap                       | 1.0     |
| manhattan_accuracy           | 0.9821  |
| manhattan_accuracy_threshold | 1.8806  |
| manhattan_f1                 | 0.991   |
| manhattan_f1_threshold       | 1.8806  |
| manhattan_precision          | 1.0     |
| manhattan_recall             | 0.9821  |
| manhattan_ap                 | 1.0     |
| euclidean_accuracy           | 0.9821  |
| euclidean_accuracy_threshold | 0.1216  |
| euclidean_f1                 | 0.991   |
| euclidean_f1_threshold       | 0.1216  |
| euclidean_precision          | 1.0     |
| euclidean_recall             | 0.9821  |
| euclidean_ap                 | 1.0     |
| max_accuracy                 | 0.9821  |
| max_accuracy_threshold       | 1.8806  |
| max_f1                       | 0.991   |
| max_f1_threshold             | 1.8806  |
| max_precision                | 1.0     |
| max_recall                   | 0.9821  |
| **max_ap**                   | **1.0** |

#### Binary Classification
* Dataset: `pair-class-test`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value   |
|:-----------------------------|:--------|
| cosine_accuracy              | 0.9821  |
| cosine_accuracy_threshold    | 0.9923  |
| cosine_f1                    | 0.991   |
| cosine_f1_threshold          | 0.9923  |
| cosine_precision             | 1.0     |
| cosine_recall                | 0.9821  |
| cosine_ap                    | 1.0     |
| dot_accuracy                 | 0.9821  |
| dot_accuracy_threshold       | 0.9923  |
| dot_f1                       | 0.991   |
| dot_f1_threshold             | 0.9923  |
| dot_precision                | 1.0     |
| dot_recall                   | 0.9821  |
| dot_ap                       | 1.0     |
| manhattan_accuracy           | 0.9821  |
| manhattan_accuracy_threshold | 1.8806  |
| manhattan_f1                 | 0.991   |
| manhattan_f1_threshold       | 1.8806  |
| manhattan_precision          | 1.0     |
| manhattan_recall             | 0.9821  |
| manhattan_ap                 | 1.0     |
| euclidean_accuracy           | 0.9821  |
| euclidean_accuracy_threshold | 0.1216  |
| euclidean_f1                 | 0.991   |
| euclidean_f1_threshold       | 0.1216  |
| euclidean_precision          | 1.0     |
| euclidean_recall             | 0.9821  |
| euclidean_ap                 | 1.0     |
| max_accuracy                 | 0.9821  |
| max_accuracy_threshold       | 1.8806  |
| max_f1                       | 0.991   |
| max_f1_threshold             | 1.8806  |
| max_precision                | 1.0     |
| max_recall                   | 0.9821  |
| **max_ap**                   | **1.0** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 560 training samples
* Columns: <code>label</code>, <code>sentence2</code>, and <code>sentence1</code>
* Approximate statistics based on the first 560 samples:
  |         | label                        | sentence2                                                                         | sentence1                                                                        |
  |:--------|:-----------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | int                          | string                                                                            | string                                                                           |
  | details | <ul><li>1: 100.00%</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 30.18 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 30.0 tokens</li><li>max: 98 tokens</li></ul> |
* Samples:
  | label          | sentence2                                                                                          | sentence1                                                                                       |
  |:---------------|:---------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
  | <code>1</code> | <code>It is not available in v2.10.0.</code>                                                       | <code>No, it doesn't exist in v2.10.0.</code>                                                   |
  | <code>1</code> | <code>You can become a member of the research forum and pose questions to the AI community.</code> | <code>You can join and ask questions in the AI research forum.</code>                           |
  | <code>1</code> | <code>No information regarding initializing a project for PyTorch is included in the guide.</code> | <code>The guide does not provide information on how to initialize a project for PyTorch.</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)

### Evaluation Dataset

#### json

* Dataset: json
* Size: 560 evaluation samples
* Columns: <code>label</code>, <code>sentence2</code>, and <code>sentence1</code>
* Approximate statistics based on the first 560 samples:
  |         | label                        | sentence2                                                                          | sentence1                                                                          |
  |:--------|:-----------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | int                          | string                                                                             | string                                                                             |
  | details | <ul><li>1: 100.00%</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 32.29 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 31.96 tokens</li><li>max: 82 tokens</li></ul> |
* Samples:
  | label          | sentence2                                                                                                                                                                                                               | sentence1                                                                                                                                                                                                        |
  |:---------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>1</code> | <code>The how-to guides for the platform include instructions for Setup, Processing, Streaming, TensorFlow integration, PyTorch integration, Caching, Cloud storage, Indexing, Analytics, and Data Pipelines.</code>    | <code>The how-to guides for the platform include Setup, Processing, Streaming, TensorFlow integration, PyTorch integration, Cache management, Cloud storage, Search index, Analytics, and Data Pipelines.</code> |
  | <code>1</code> | <code>In the absence of a model script, all files in the supported formats will be loaded. However, if a model script is present, it will be downloaded and executed in order to download and prepare the model.</code> | <code>If there’s no model script, all the files in the supported formats are loaded. If there’s a model script, it is downloaded and executed to download and prepare the model.</code>                          |
  | <code>1</code> | <code>React, Angular, and Vue are compatible with the Plugin library.</code>                                                                                                                                            | <code>The Plugin library can be used with React, Angular, and Vue.</code>                                                                                                                                        |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 2
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step   | Training Loss | loss       | pair-class-dev_max_ap | pair-class-test_max_ap |
|:-------:|:------:|:-------------:|:----------:|:---------------------:|:----------------------:|
| 0       | 0      | -             | -          | 1.0                   | -                      |
| 1.0     | 8      | -             | 0.0028     | 1.0                   | -                      |
| 1.25    | 10     | 0.1425        | -          | -                     | -                      |
| 2.0     | 16     | -             | 0.0003     | 1.0                   | -                      |
| 2.5     | 20     | 0.002         | -          | -                     | -                      |
| 3.0     | 24     | -             | 0.0001     | 1.0                   | -                      |
| 3.75    | 30     | 0.0008        | -          | -                     | -                      |
| **4.0** | **32** | **-**         | **0.0001** | **1.0**               | **1.0**                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->