Add new SentenceTransformer model.
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +731 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,731 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: intfloat/multilingual-e5-small
|
3 |
+
library_name: sentence-transformers
|
4 |
+
metrics:
|
5 |
+
- cosine_accuracy
|
6 |
+
- cosine_accuracy_threshold
|
7 |
+
- cosine_f1
|
8 |
+
- cosine_f1_threshold
|
9 |
+
- cosine_precision
|
10 |
+
- cosine_recall
|
11 |
+
- cosine_ap
|
12 |
+
- dot_accuracy
|
13 |
+
- dot_accuracy_threshold
|
14 |
+
- dot_f1
|
15 |
+
- dot_f1_threshold
|
16 |
+
- dot_precision
|
17 |
+
- dot_recall
|
18 |
+
- dot_ap
|
19 |
+
- manhattan_accuracy
|
20 |
+
- manhattan_accuracy_threshold
|
21 |
+
- manhattan_f1
|
22 |
+
- manhattan_f1_threshold
|
23 |
+
- manhattan_precision
|
24 |
+
- manhattan_recall
|
25 |
+
- manhattan_ap
|
26 |
+
- euclidean_accuracy
|
27 |
+
- euclidean_accuracy_threshold
|
28 |
+
- euclidean_f1
|
29 |
+
- euclidean_f1_threshold
|
30 |
+
- euclidean_precision
|
31 |
+
- euclidean_recall
|
32 |
+
- euclidean_ap
|
33 |
+
- max_accuracy
|
34 |
+
- max_accuracy_threshold
|
35 |
+
- max_f1
|
36 |
+
- max_f1_threshold
|
37 |
+
- max_precision
|
38 |
+
- max_recall
|
39 |
+
- max_ap
|
40 |
+
pipeline_tag: sentence-similarity
|
41 |
+
tags:
|
42 |
+
- sentence-transformers
|
43 |
+
- sentence-similarity
|
44 |
+
- feature-extraction
|
45 |
+
- generated_from_trainer
|
46 |
+
- dataset_size:2752
|
47 |
+
- loss:OnlineContrastiveLoss
|
48 |
+
widget:
|
49 |
+
- source_sentence: Would you want to be President?
|
50 |
+
sentences:
|
51 |
+
- Can you help me with my homework?
|
52 |
+
- How to bake cookies?
|
53 |
+
- Why do you want to be to president?
|
54 |
+
- source_sentence: Velocity of sound waves in the atmosphere
|
55 |
+
sentences:
|
56 |
+
- What is the speed of sound in air?
|
57 |
+
- What is the best/most memorable thing you've ever eaten and why?
|
58 |
+
- The `safe` option in the `to_spreadsheet` method controls whether a safe conversion
|
59 |
+
or not is needed for certain plant attributes to store the data in a SpreadsheetTable
|
60 |
+
or Row.
|
61 |
+
- source_sentence: Number of countries in the European Union
|
62 |
+
sentences:
|
63 |
+
- How many countries are in the European Union?
|
64 |
+
- Who painted the Sistine Chapel ceiling?
|
65 |
+
- The RecipeManager class is used to manage the downloading and extraction of recipes.
|
66 |
+
- source_sentence: Official currency of the USA
|
67 |
+
sentences:
|
68 |
+
- What is purpose of life?
|
69 |
+
- Files inside ZIP archives are accessed and yielded sequentially using iter_zip().
|
70 |
+
- What is the currency of the United States?
|
71 |
+
- source_sentence: Who wrote the book "1984"?
|
72 |
+
sentences:
|
73 |
+
- What is the speed of light?
|
74 |
+
- How to set up a home gym?
|
75 |
+
- Who wrote the book "To Kill a Mockingbird"?
|
76 |
+
model-index:
|
77 |
+
- name: SentenceTransformer based on intfloat/multilingual-e5-small
|
78 |
+
results:
|
79 |
+
- task:
|
80 |
+
type: binary-classification
|
81 |
+
name: Binary Classification
|
82 |
+
dataset:
|
83 |
+
name: pair class dev
|
84 |
+
type: pair-class-dev
|
85 |
+
metrics:
|
86 |
+
- type: cosine_accuracy
|
87 |
+
value: 0.9456521739130435
|
88 |
+
name: Cosine Accuracy
|
89 |
+
- type: cosine_accuracy_threshold
|
90 |
+
value: 0.8053532838821411
|
91 |
+
name: Cosine Accuracy Threshold
|
92 |
+
- type: cosine_f1
|
93 |
+
value: 0.9554896142433236
|
94 |
+
name: Cosine F1
|
95 |
+
- type: cosine_f1_threshold
|
96 |
+
value: 0.8053532838821411
|
97 |
+
name: Cosine F1 Threshold
|
98 |
+
- type: cosine_precision
|
99 |
+
value: 0.92
|
100 |
+
name: Cosine Precision
|
101 |
+
- type: cosine_recall
|
102 |
+
value: 0.9938271604938271
|
103 |
+
name: Cosine Recall
|
104 |
+
- type: cosine_ap
|
105 |
+
value: 0.970102365862799
|
106 |
+
name: Cosine Ap
|
107 |
+
- type: dot_accuracy
|
108 |
+
value: 0.9456521739130435
|
109 |
+
name: Dot Accuracy
|
110 |
+
- type: dot_accuracy_threshold
|
111 |
+
value: 0.8053532838821411
|
112 |
+
name: Dot Accuracy Threshold
|
113 |
+
- type: dot_f1
|
114 |
+
value: 0.9554896142433236
|
115 |
+
name: Dot F1
|
116 |
+
- type: dot_f1_threshold
|
117 |
+
value: 0.8053532838821411
|
118 |
+
name: Dot F1 Threshold
|
119 |
+
- type: dot_precision
|
120 |
+
value: 0.92
|
121 |
+
name: Dot Precision
|
122 |
+
- type: dot_recall
|
123 |
+
value: 0.9938271604938271
|
124 |
+
name: Dot Recall
|
125 |
+
- type: dot_ap
|
126 |
+
value: 0.970102365862799
|
127 |
+
name: Dot Ap
|
128 |
+
- type: manhattan_accuracy
|
129 |
+
value: 0.9456521739130435
|
130 |
+
name: Manhattan Accuracy
|
131 |
+
- type: manhattan_accuracy_threshold
|
132 |
+
value: 9.787351608276367
|
133 |
+
name: Manhattan Accuracy Threshold
|
134 |
+
- type: manhattan_f1
|
135 |
+
value: 0.9554896142433236
|
136 |
+
name: Manhattan F1
|
137 |
+
- type: manhattan_f1_threshold
|
138 |
+
value: 9.787351608276367
|
139 |
+
name: Manhattan F1 Threshold
|
140 |
+
- type: manhattan_precision
|
141 |
+
value: 0.92
|
142 |
+
name: Manhattan Precision
|
143 |
+
- type: manhattan_recall
|
144 |
+
value: 0.9938271604938271
|
145 |
+
name: Manhattan Recall
|
146 |
+
- type: manhattan_ap
|
147 |
+
value: 0.9698493258522533
|
148 |
+
name: Manhattan Ap
|
149 |
+
- type: euclidean_accuracy
|
150 |
+
value: 0.9456521739130435
|
151 |
+
name: Euclidean Accuracy
|
152 |
+
- type: euclidean_accuracy_threshold
|
153 |
+
value: 0.6239285469055176
|
154 |
+
name: Euclidean Accuracy Threshold
|
155 |
+
- type: euclidean_f1
|
156 |
+
value: 0.9554896142433236
|
157 |
+
name: Euclidean F1
|
158 |
+
- type: euclidean_f1_threshold
|
159 |
+
value: 0.6239285469055176
|
160 |
+
name: Euclidean F1 Threshold
|
161 |
+
- type: euclidean_precision
|
162 |
+
value: 0.92
|
163 |
+
name: Euclidean Precision
|
164 |
+
- type: euclidean_recall
|
165 |
+
value: 0.9938271604938271
|
166 |
+
name: Euclidean Recall
|
167 |
+
- type: euclidean_ap
|
168 |
+
value: 0.970102365862799
|
169 |
+
name: Euclidean Ap
|
170 |
+
- type: max_accuracy
|
171 |
+
value: 0.9456521739130435
|
172 |
+
name: Max Accuracy
|
173 |
+
- type: max_accuracy_threshold
|
174 |
+
value: 9.787351608276367
|
175 |
+
name: Max Accuracy Threshold
|
176 |
+
- type: max_f1
|
177 |
+
value: 0.9554896142433236
|
178 |
+
name: Max F1
|
179 |
+
- type: max_f1_threshold
|
180 |
+
value: 9.787351608276367
|
181 |
+
name: Max F1 Threshold
|
182 |
+
- type: max_precision
|
183 |
+
value: 0.92
|
184 |
+
name: Max Precision
|
185 |
+
- type: max_recall
|
186 |
+
value: 0.9938271604938271
|
187 |
+
name: Max Recall
|
188 |
+
- type: max_ap
|
189 |
+
value: 0.970102365862799
|
190 |
+
name: Max Ap
|
191 |
+
- task:
|
192 |
+
type: binary-classification
|
193 |
+
name: Binary Classification
|
194 |
+
dataset:
|
195 |
+
name: pair class test
|
196 |
+
type: pair-class-test
|
197 |
+
metrics:
|
198 |
+
- type: cosine_accuracy
|
199 |
+
value: 0.9456521739130435
|
200 |
+
name: Cosine Accuracy
|
201 |
+
- type: cosine_accuracy_threshold
|
202 |
+
value: 0.8053532838821411
|
203 |
+
name: Cosine Accuracy Threshold
|
204 |
+
- type: cosine_f1
|
205 |
+
value: 0.9554896142433236
|
206 |
+
name: Cosine F1
|
207 |
+
- type: cosine_f1_threshold
|
208 |
+
value: 0.8053532838821411
|
209 |
+
name: Cosine F1 Threshold
|
210 |
+
- type: cosine_precision
|
211 |
+
value: 0.92
|
212 |
+
name: Cosine Precision
|
213 |
+
- type: cosine_recall
|
214 |
+
value: 0.9938271604938271
|
215 |
+
name: Cosine Recall
|
216 |
+
- type: cosine_ap
|
217 |
+
value: 0.970102365862799
|
218 |
+
name: Cosine Ap
|
219 |
+
- type: dot_accuracy
|
220 |
+
value: 0.9456521739130435
|
221 |
+
name: Dot Accuracy
|
222 |
+
- type: dot_accuracy_threshold
|
223 |
+
value: 0.8053532838821411
|
224 |
+
name: Dot Accuracy Threshold
|
225 |
+
- type: dot_f1
|
226 |
+
value: 0.9554896142433236
|
227 |
+
name: Dot F1
|
228 |
+
- type: dot_f1_threshold
|
229 |
+
value: 0.8053532838821411
|
230 |
+
name: Dot F1 Threshold
|
231 |
+
- type: dot_precision
|
232 |
+
value: 0.92
|
233 |
+
name: Dot Precision
|
234 |
+
- type: dot_recall
|
235 |
+
value: 0.9938271604938271
|
236 |
+
name: Dot Recall
|
237 |
+
- type: dot_ap
|
238 |
+
value: 0.970102365862799
|
239 |
+
name: Dot Ap
|
240 |
+
- type: manhattan_accuracy
|
241 |
+
value: 0.9456521739130435
|
242 |
+
name: Manhattan Accuracy
|
243 |
+
- type: manhattan_accuracy_threshold
|
244 |
+
value: 9.787351608276367
|
245 |
+
name: Manhattan Accuracy Threshold
|
246 |
+
- type: manhattan_f1
|
247 |
+
value: 0.9554896142433236
|
248 |
+
name: Manhattan F1
|
249 |
+
- type: manhattan_f1_threshold
|
250 |
+
value: 9.787351608276367
|
251 |
+
name: Manhattan F1 Threshold
|
252 |
+
- type: manhattan_precision
|
253 |
+
value: 0.92
|
254 |
+
name: Manhattan Precision
|
255 |
+
- type: manhattan_recall
|
256 |
+
value: 0.9938271604938271
|
257 |
+
name: Manhattan Recall
|
258 |
+
- type: manhattan_ap
|
259 |
+
value: 0.9698493258522533
|
260 |
+
name: Manhattan Ap
|
261 |
+
- type: euclidean_accuracy
|
262 |
+
value: 0.9456521739130435
|
263 |
+
name: Euclidean Accuracy
|
264 |
+
- type: euclidean_accuracy_threshold
|
265 |
+
value: 0.6239285469055176
|
266 |
+
name: Euclidean Accuracy Threshold
|
267 |
+
- type: euclidean_f1
|
268 |
+
value: 0.9554896142433236
|
269 |
+
name: Euclidean F1
|
270 |
+
- type: euclidean_f1_threshold
|
271 |
+
value: 0.6239285469055176
|
272 |
+
name: Euclidean F1 Threshold
|
273 |
+
- type: euclidean_precision
|
274 |
+
value: 0.92
|
275 |
+
name: Euclidean Precision
|
276 |
+
- type: euclidean_recall
|
277 |
+
value: 0.9938271604938271
|
278 |
+
name: Euclidean Recall
|
279 |
+
- type: euclidean_ap
|
280 |
+
value: 0.970102365862799
|
281 |
+
name: Euclidean Ap
|
282 |
+
- type: max_accuracy
|
283 |
+
value: 0.9456521739130435
|
284 |
+
name: Max Accuracy
|
285 |
+
- type: max_accuracy_threshold
|
286 |
+
value: 9.787351608276367
|
287 |
+
name: Max Accuracy Threshold
|
288 |
+
- type: max_f1
|
289 |
+
value: 0.9554896142433236
|
290 |
+
name: Max F1
|
291 |
+
- type: max_f1_threshold
|
292 |
+
value: 9.787351608276367
|
293 |
+
name: Max F1 Threshold
|
294 |
+
- type: max_precision
|
295 |
+
value: 0.92
|
296 |
+
name: Max Precision
|
297 |
+
- type: max_recall
|
298 |
+
value: 0.9938271604938271
|
299 |
+
name: Max Recall
|
300 |
+
- type: max_ap
|
301 |
+
value: 0.970102365862799
|
302 |
+
name: Max Ap
|
303 |
+
---
|
304 |
+
|
305 |
+
# SentenceTransformer based on intfloat/multilingual-e5-small
|
306 |
+
|
307 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
308 |
+
|
309 |
+
## Model Details
|
310 |
+
|
311 |
+
### Model Description
|
312 |
+
- **Model Type:** Sentence Transformer
|
313 |
+
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
|
314 |
+
- **Maximum Sequence Length:** 512 tokens
|
315 |
+
- **Output Dimensionality:** 384 tokens
|
316 |
+
- **Similarity Function:** Cosine Similarity
|
317 |
+
<!-- - **Training Dataset:** Unknown -->
|
318 |
+
<!-- - **Language:** Unknown -->
|
319 |
+
<!-- - **License:** Unknown -->
|
320 |
+
|
321 |
+
### Model Sources
|
322 |
+
|
323 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
324 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
325 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
326 |
+
|
327 |
+
### Full Model Architecture
|
328 |
+
|
329 |
+
```
|
330 |
+
SentenceTransformer(
|
331 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
332 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
333 |
+
(2): Normalize()
|
334 |
+
)
|
335 |
+
```
|
336 |
+
|
337 |
+
## Usage
|
338 |
+
|
339 |
+
### Direct Usage (Sentence Transformers)
|
340 |
+
|
341 |
+
First install the Sentence Transformers library:
|
342 |
+
|
343 |
+
```bash
|
344 |
+
pip install -U sentence-transformers
|
345 |
+
```
|
346 |
+
|
347 |
+
Then you can load this model and run inference.
|
348 |
+
```python
|
349 |
+
from sentence_transformers import SentenceTransformer
|
350 |
+
|
351 |
+
# Download from the 🤗 Hub
|
352 |
+
model = SentenceTransformer("srikarvar/fine_tuned_model_17")
|
353 |
+
# Run inference
|
354 |
+
sentences = [
|
355 |
+
'Who wrote the book "1984"?',
|
356 |
+
'Who wrote the book "To Kill a Mockingbird"?',
|
357 |
+
'What is the speed of light?',
|
358 |
+
]
|
359 |
+
embeddings = model.encode(sentences)
|
360 |
+
print(embeddings.shape)
|
361 |
+
# [3, 384]
|
362 |
+
|
363 |
+
# Get the similarity scores for the embeddings
|
364 |
+
similarities = model.similarity(embeddings, embeddings)
|
365 |
+
print(similarities.shape)
|
366 |
+
# [3, 3]
|
367 |
+
```
|
368 |
+
|
369 |
+
<!--
|
370 |
+
### Direct Usage (Transformers)
|
371 |
+
|
372 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
373 |
+
|
374 |
+
</details>
|
375 |
+
-->
|
376 |
+
|
377 |
+
<!--
|
378 |
+
### Downstream Usage (Sentence Transformers)
|
379 |
+
|
380 |
+
You can finetune this model on your own dataset.
|
381 |
+
|
382 |
+
<details><summary>Click to expand</summary>
|
383 |
+
|
384 |
+
</details>
|
385 |
+
-->
|
386 |
+
|
387 |
+
<!--
|
388 |
+
### Out-of-Scope Use
|
389 |
+
|
390 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
391 |
+
-->
|
392 |
+
|
393 |
+
## Evaluation
|
394 |
+
|
395 |
+
### Metrics
|
396 |
+
|
397 |
+
#### Binary Classification
|
398 |
+
* Dataset: `pair-class-dev`
|
399 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
400 |
+
|
401 |
+
| Metric | Value |
|
402 |
+
|:-----------------------------|:-----------|
|
403 |
+
| cosine_accuracy | 0.9457 |
|
404 |
+
| cosine_accuracy_threshold | 0.8054 |
|
405 |
+
| cosine_f1 | 0.9555 |
|
406 |
+
| cosine_f1_threshold | 0.8054 |
|
407 |
+
| cosine_precision | 0.92 |
|
408 |
+
| cosine_recall | 0.9938 |
|
409 |
+
| cosine_ap | 0.9701 |
|
410 |
+
| dot_accuracy | 0.9457 |
|
411 |
+
| dot_accuracy_threshold | 0.8054 |
|
412 |
+
| dot_f1 | 0.9555 |
|
413 |
+
| dot_f1_threshold | 0.8054 |
|
414 |
+
| dot_precision | 0.92 |
|
415 |
+
| dot_recall | 0.9938 |
|
416 |
+
| dot_ap | 0.9701 |
|
417 |
+
| manhattan_accuracy | 0.9457 |
|
418 |
+
| manhattan_accuracy_threshold | 9.7874 |
|
419 |
+
| manhattan_f1 | 0.9555 |
|
420 |
+
| manhattan_f1_threshold | 9.7874 |
|
421 |
+
| manhattan_precision | 0.92 |
|
422 |
+
| manhattan_recall | 0.9938 |
|
423 |
+
| manhattan_ap | 0.9698 |
|
424 |
+
| euclidean_accuracy | 0.9457 |
|
425 |
+
| euclidean_accuracy_threshold | 0.6239 |
|
426 |
+
| euclidean_f1 | 0.9555 |
|
427 |
+
| euclidean_f1_threshold | 0.6239 |
|
428 |
+
| euclidean_precision | 0.92 |
|
429 |
+
| euclidean_recall | 0.9938 |
|
430 |
+
| euclidean_ap | 0.9701 |
|
431 |
+
| max_accuracy | 0.9457 |
|
432 |
+
| max_accuracy_threshold | 9.7874 |
|
433 |
+
| max_f1 | 0.9555 |
|
434 |
+
| max_f1_threshold | 9.7874 |
|
435 |
+
| max_precision | 0.92 |
|
436 |
+
| max_recall | 0.9938 |
|
437 |
+
| **max_ap** | **0.9701** |
|
438 |
+
|
439 |
+
#### Binary Classification
|
440 |
+
* Dataset: `pair-class-test`
|
441 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
442 |
+
|
443 |
+
| Metric | Value |
|
444 |
+
|:-----------------------------|:-----------|
|
445 |
+
| cosine_accuracy | 0.9457 |
|
446 |
+
| cosine_accuracy_threshold | 0.8054 |
|
447 |
+
| cosine_f1 | 0.9555 |
|
448 |
+
| cosine_f1_threshold | 0.8054 |
|
449 |
+
| cosine_precision | 0.92 |
|
450 |
+
| cosine_recall | 0.9938 |
|
451 |
+
| cosine_ap | 0.9701 |
|
452 |
+
| dot_accuracy | 0.9457 |
|
453 |
+
| dot_accuracy_threshold | 0.8054 |
|
454 |
+
| dot_f1 | 0.9555 |
|
455 |
+
| dot_f1_threshold | 0.8054 |
|
456 |
+
| dot_precision | 0.92 |
|
457 |
+
| dot_recall | 0.9938 |
|
458 |
+
| dot_ap | 0.9701 |
|
459 |
+
| manhattan_accuracy | 0.9457 |
|
460 |
+
| manhattan_accuracy_threshold | 9.7874 |
|
461 |
+
| manhattan_f1 | 0.9555 |
|
462 |
+
| manhattan_f1_threshold | 9.7874 |
|
463 |
+
| manhattan_precision | 0.92 |
|
464 |
+
| manhattan_recall | 0.9938 |
|
465 |
+
| manhattan_ap | 0.9698 |
|
466 |
+
| euclidean_accuracy | 0.9457 |
|
467 |
+
| euclidean_accuracy_threshold | 0.6239 |
|
468 |
+
| euclidean_f1 | 0.9555 |
|
469 |
+
| euclidean_f1_threshold | 0.6239 |
|
470 |
+
| euclidean_precision | 0.92 |
|
471 |
+
| euclidean_recall | 0.9938 |
|
472 |
+
| euclidean_ap | 0.9701 |
|
473 |
+
| max_accuracy | 0.9457 |
|
474 |
+
| max_accuracy_threshold | 9.7874 |
|
475 |
+
| max_f1 | 0.9555 |
|
476 |
+
| max_f1_threshold | 9.7874 |
|
477 |
+
| max_precision | 0.92 |
|
478 |
+
| max_recall | 0.9938 |
|
479 |
+
| **max_ap** | **0.9701** |
|
480 |
+
|
481 |
+
<!--
|
482 |
+
## Bias, Risks and Limitations
|
483 |
+
|
484 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
485 |
+
-->
|
486 |
+
|
487 |
+
<!--
|
488 |
+
### Recommendations
|
489 |
+
|
490 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
491 |
+
-->
|
492 |
+
|
493 |
+
## Training Details
|
494 |
+
|
495 |
+
### Training Dataset
|
496 |
+
|
497 |
+
#### Unnamed Dataset
|
498 |
+
|
499 |
+
|
500 |
+
* Size: 2,752 training samples
|
501 |
+
* Columns: <code>sentence2</code>, <code>label</code>, and <code>sentence1</code>
|
502 |
+
* Approximate statistics based on the first 1000 samples:
|
503 |
+
| | sentence2 | label | sentence1 |
|
504 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------|:----------------------------------------------------------------------------------|
|
505 |
+
| type | string | int | string |
|
506 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 10.14 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>0: ~49.00%</li><li>1: ~51.00%</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.77 tokens</li><li>max: 22 tokens</li></ul> |
|
507 |
+
* Samples:
|
508 |
+
| sentence2 | label | sentence1 |
|
509 |
+
|:---------------------------------------------------|:---------------|:--------------------------------------------------|
|
510 |
+
| <code>What are the ingredients of pizza?</code> | <code>1</code> | <code>What are the ingredients of a pizza?</code> |
|
511 |
+
| <code>What are the ingredients of a burger?</code> | <code>0</code> | <code>What are the ingredients of a pizza?</code> |
|
512 |
+
| <code>How is photosynthesis carried out?</code> | <code>1</code> | <code>How does photosynthesis work?</code> |
|
513 |
+
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
|
514 |
+
|
515 |
+
### Evaluation Dataset
|
516 |
+
|
517 |
+
#### Unnamed Dataset
|
518 |
+
|
519 |
+
|
520 |
+
* Size: 276 evaluation samples
|
521 |
+
* Columns: <code>sentence2</code>, <code>label</code>, and <code>sentence1</code>
|
522 |
+
* Approximate statistics based on the first 276 samples:
|
523 |
+
| | sentence2 | label | sentence1 |
|
524 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------|:----------------------------------------------------------------------------------|
|
525 |
+
| type | string | int | string |
|
526 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 15.34 tokens</li><li>max: 86 tokens</li></ul> | <ul><li>0: ~41.30%</li><li>1: ~58.70%</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.56 tokens</li><li>max: 87 tokens</li></ul> |
|
527 |
+
* Samples:
|
528 |
+
| sentence2 | label | sentence1 |
|
529 |
+
|:---------------------------------------------------------------------------------------------------------------------------|:---------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
530 |
+
| <code>How is AI used to enhance cybersecurity?</code> | <code>0</code> | <code>What are the challenges of AI in cybersecurity?</code> |
|
531 |
+
| <code>The SYSTEM log documentation can be accessed by clicking on the link which will take you to the main version.</code> | <code>1</code> | <code>You can find the SYSTEM log documentation on the main version. Click on the provided link to redirect to the main version of the documentation.</code> |
|
532 |
+
| <code>Name the capital city of Italy</code> | <code>1</code> | <code>What is the capital of Italy?</code> |
|
533 |
+
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
|
534 |
+
|
535 |
+
### Training Hyperparameters
|
536 |
+
#### Non-Default Hyperparameters
|
537 |
+
|
538 |
+
- `eval_strategy`: epoch
|
539 |
+
- `per_device_train_batch_size`: 32
|
540 |
+
- `per_device_eval_batch_size`: 32
|
541 |
+
- `gradient_accumulation_steps`: 2
|
542 |
+
- `num_train_epochs`: 4
|
543 |
+
- `warmup_ratio`: 0.1
|
544 |
+
- `load_best_model_at_end`: True
|
545 |
+
- `optim`: adamw_torch_fused
|
546 |
+
- `batch_sampler`: no_duplicates
|
547 |
+
|
548 |
+
#### All Hyperparameters
|
549 |
+
<details><summary>Click to expand</summary>
|
550 |
+
|
551 |
+
- `overwrite_output_dir`: False
|
552 |
+
- `do_predict`: False
|
553 |
+
- `eval_strategy`: epoch
|
554 |
+
- `prediction_loss_only`: True
|
555 |
+
- `per_device_train_batch_size`: 32
|
556 |
+
- `per_device_eval_batch_size`: 32
|
557 |
+
- `per_gpu_train_batch_size`: None
|
558 |
+
- `per_gpu_eval_batch_size`: None
|
559 |
+
- `gradient_accumulation_steps`: 2
|
560 |
+
- `eval_accumulation_steps`: None
|
561 |
+
- `learning_rate`: 5e-05
|
562 |
+
- `weight_decay`: 0.0
|
563 |
+
- `adam_beta1`: 0.9
|
564 |
+
- `adam_beta2`: 0.999
|
565 |
+
- `adam_epsilon`: 1e-08
|
566 |
+
- `max_grad_norm`: 1.0
|
567 |
+
- `num_train_epochs`: 4
|
568 |
+
- `max_steps`: -1
|
569 |
+
- `lr_scheduler_type`: linear
|
570 |
+
- `lr_scheduler_kwargs`: {}
|
571 |
+
- `warmup_ratio`: 0.1
|
572 |
+
- `warmup_steps`: 0
|
573 |
+
- `log_level`: passive
|
574 |
+
- `log_level_replica`: warning
|
575 |
+
- `log_on_each_node`: True
|
576 |
+
- `logging_nan_inf_filter`: True
|
577 |
+
- `save_safetensors`: True
|
578 |
+
- `save_on_each_node`: False
|
579 |
+
- `save_only_model`: False
|
580 |
+
- `restore_callback_states_from_checkpoint`: False
|
581 |
+
- `no_cuda`: False
|
582 |
+
- `use_cpu`: False
|
583 |
+
- `use_mps_device`: False
|
584 |
+
- `seed`: 42
|
585 |
+
- `data_seed`: None
|
586 |
+
- `jit_mode_eval`: False
|
587 |
+
- `use_ipex`: False
|
588 |
+
- `bf16`: False
|
589 |
+
- `fp16`: False
|
590 |
+
- `fp16_opt_level`: O1
|
591 |
+
- `half_precision_backend`: auto
|
592 |
+
- `bf16_full_eval`: False
|
593 |
+
- `fp16_full_eval`: False
|
594 |
+
- `tf32`: None
|
595 |
+
- `local_rank`: 0
|
596 |
+
- `ddp_backend`: None
|
597 |
+
- `tpu_num_cores`: None
|
598 |
+
- `tpu_metrics_debug`: False
|
599 |
+
- `debug`: []
|
600 |
+
- `dataloader_drop_last`: False
|
601 |
+
- `dataloader_num_workers`: 0
|
602 |
+
- `dataloader_prefetch_factor`: None
|
603 |
+
- `past_index`: -1
|
604 |
+
- `disable_tqdm`: False
|
605 |
+
- `remove_unused_columns`: True
|
606 |
+
- `label_names`: None
|
607 |
+
- `load_best_model_at_end`: True
|
608 |
+
- `ignore_data_skip`: False
|
609 |
+
- `fsdp`: []
|
610 |
+
- `fsdp_min_num_params`: 0
|
611 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
612 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
613 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
614 |
+
- `deepspeed`: None
|
615 |
+
- `label_smoothing_factor`: 0.0
|
616 |
+
- `optim`: adamw_torch_fused
|
617 |
+
- `optim_args`: None
|
618 |
+
- `adafactor`: False
|
619 |
+
- `group_by_length`: False
|
620 |
+
- `length_column_name`: length
|
621 |
+
- `ddp_find_unused_parameters`: None
|
622 |
+
- `ddp_bucket_cap_mb`: None
|
623 |
+
- `ddp_broadcast_buffers`: False
|
624 |
+
- `dataloader_pin_memory`: True
|
625 |
+
- `dataloader_persistent_workers`: False
|
626 |
+
- `skip_memory_metrics`: True
|
627 |
+
- `use_legacy_prediction_loop`: False
|
628 |
+
- `push_to_hub`: False
|
629 |
+
- `resume_from_checkpoint`: None
|
630 |
+
- `hub_model_id`: None
|
631 |
+
- `hub_strategy`: every_save
|
632 |
+
- `hub_private_repo`: False
|
633 |
+
- `hub_always_push`: False
|
634 |
+
- `gradient_checkpointing`: False
|
635 |
+
- `gradient_checkpointing_kwargs`: None
|
636 |
+
- `include_inputs_for_metrics`: False
|
637 |
+
- `eval_do_concat_batches`: True
|
638 |
+
- `fp16_backend`: auto
|
639 |
+
- `push_to_hub_model_id`: None
|
640 |
+
- `push_to_hub_organization`: None
|
641 |
+
- `mp_parameters`:
|
642 |
+
- `auto_find_batch_size`: False
|
643 |
+
- `full_determinism`: False
|
644 |
+
- `torchdynamo`: None
|
645 |
+
- `ray_scope`: last
|
646 |
+
- `ddp_timeout`: 1800
|
647 |
+
- `torch_compile`: False
|
648 |
+
- `torch_compile_backend`: None
|
649 |
+
- `torch_compile_mode`: None
|
650 |
+
- `dispatch_batches`: None
|
651 |
+
- `split_batches`: None
|
652 |
+
- `include_tokens_per_second`: False
|
653 |
+
- `include_num_input_tokens_seen`: False
|
654 |
+
- `neftune_noise_alpha`: None
|
655 |
+
- `optim_target_modules`: None
|
656 |
+
- `batch_eval_metrics`: False
|
657 |
+
- `batch_sampler`: no_duplicates
|
658 |
+
- `multi_dataset_batch_sampler`: proportional
|
659 |
+
|
660 |
+
</details>
|
661 |
+
|
662 |
+
### Training Logs
|
663 |
+
| Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
|
664 |
+
|:----------:|:-------:|:-------------:|:----------:|:---------------------:|:----------------------:|
|
665 |
+
| 0 | 0 | - | - | 0.7876 | - |
|
666 |
+
| 0.2326 | 10 | 1.5405 | - | - | - |
|
667 |
+
| 0.4651 | 20 | 1.0389 | - | - | - |
|
668 |
+
| 0.6977 | 30 | 1.2755 | - | - | - |
|
669 |
+
| 0.9302 | 40 | 0.7024 | - | - | - |
|
670 |
+
| 1.0 | 43 | - | 0.9673 | 0.9133 | - |
|
671 |
+
| 1.1512 | 50 | 0.7527 | - | - | - |
|
672 |
+
| 1.3837 | 60 | 0.6684 | - | - | - |
|
673 |
+
| 1.6163 | 70 | 0.7612 | - | - | - |
|
674 |
+
| 1.8488 | 80 | 0.7265 | - | - | - |
|
675 |
+
| 2.0116 | 87 | - | 0.4647 | 0.9534 | - |
|
676 |
+
| 2.0698 | 90 | 0.2986 | - | - | - |
|
677 |
+
| 2.3023 | 100 | 0.1964 | - | - | - |
|
678 |
+
| 2.5349 | 110 | 0.5834 | - | - | - |
|
679 |
+
| 2.7674 | 120 | 0.4893 | - | - | - |
|
680 |
+
| 3.0 | 130 | 0.1254 | 0.3544 | 0.9670 | - |
|
681 |
+
| 3.2209 | 140 | 0.278 | - | - | - |
|
682 |
+
| 3.4535 | 150 | 0.1805 | - | - | - |
|
683 |
+
| 3.6860 | 160 | 0.4525 | - | - | - |
|
684 |
+
| 3.9186 | 170 | 0.1885 | - | - | - |
|
685 |
+
| **3.9651** | **172** | **-** | **0.3396** | **0.9701** | **0.9701** |
|
686 |
+
|
687 |
+
* The bold row denotes the saved checkpoint.
|
688 |
+
|
689 |
+
### Framework Versions
|
690 |
+
- Python: 3.10.12
|
691 |
+
- Sentence Transformers: 3.1.0
|
692 |
+
- Transformers: 4.41.2
|
693 |
+
- PyTorch: 2.1.2+cu121
|
694 |
+
- Accelerate: 0.34.2
|
695 |
+
- Datasets: 2.19.1
|
696 |
+
- Tokenizers: 0.19.1
|
697 |
+
|
698 |
+
## Citation
|
699 |
+
|
700 |
+
### BibTeX
|
701 |
+
|
702 |
+
#### Sentence Transformers
|
703 |
+
```bibtex
|
704 |
+
@inproceedings{reimers-2019-sentence-bert,
|
705 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
706 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
707 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
708 |
+
month = "11",
|
709 |
+
year = "2019",
|
710 |
+
publisher = "Association for Computational Linguistics",
|
711 |
+
url = "https://arxiv.org/abs/1908.10084",
|
712 |
+
}
|
713 |
+
```
|
714 |
+
|
715 |
+
<!--
|
716 |
+
## Glossary
|
717 |
+
|
718 |
+
*Clearly define terms in order to be accessible across audiences.*
|
719 |
+
-->
|
720 |
+
|
721 |
+
<!--
|
722 |
+
## Model Card Authors
|
723 |
+
|
724 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
725 |
+
-->
|
726 |
+
|
727 |
+
<!--
|
728 |
+
## Model Card Contact
|
729 |
+
|
730 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
731 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "intfloat/multilingual-e5-small",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.41.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 250037
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.0",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.1.2+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dac04dfd7fe36eb8831abb0ddb7647b812635d58f190766ff13d1b5e321ca14
|
3 |
+
size 470637416
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
|
3 |
+
size 17083053
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"sp_model_kwargs": {},
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|