---
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1030
- loss:ContrastiveLoss
widget:
- source_sentence: First climber to reach the summit of Everest
sentences:
- How to create a podcast?
- How to cook sushi rice?
- Who was the first person to climb Mount Everest?
- source_sentence: What methods are used to measure a nation's GDP?
sentences:
- How is the GDP of a country measured?
- How do I sign out of my email account?
- How does digital marketing differ from traditional marketing?
- source_sentence: Steps to sign up for a new account
sentences:
- How to grow tomatoes in a garden?
- What is the process for creating a new account?
- What is the GDP of India?
- source_sentence: Name of the tallest building in New York
sentences:
- What are the symptoms of anxiety?
- What is the tallest building in New York?
- Who was the first female Prime Minister of the UK?
- source_sentence: How do you make a paper boat?
sentences:
- What are the benefits of using solar energy?
- Where can I buy a new phone?
- How do you make a paper airplane?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.9478260869565217
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.6633322238922119
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9558823529411764
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6633322238922119
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9154929577464789
name: Cosine Precision
- type: cosine_recall
value: 1.0
name: Cosine Recall
- type: cosine_ap
value: 0.9777355464218691
name: Cosine Ap
- type: dot_accuracy
value: 0.9478260869565217
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.6633322238922119
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9558823529411764
name: Dot F1
- type: dot_f1_threshold
value: 0.6633322238922119
name: Dot F1 Threshold
- type: dot_precision
value: 0.9154929577464789
name: Dot Precision
- type: dot_recall
value: 1.0
name: Dot Recall
- type: dot_ap
value: 0.9777355464218691
name: Dot Ap
- type: manhattan_accuracy
value: 0.9391304347826087
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.603110313415527
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9489051094890512
name: Manhattan F1
- type: manhattan_f1_threshold
value: 12.660685539245605
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9027777777777778
name: Manhattan Precision
- type: manhattan_recall
value: 1.0
name: Manhattan Recall
- type: manhattan_ap
value: 0.975614621691024
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9478260869565217
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.8205450773239136
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9558823529411764
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.8205450773239136
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9154929577464789
name: Euclidean Precision
- type: euclidean_recall
value: 1.0
name: Euclidean Recall
- type: euclidean_ap
value: 0.9777355464218691
name: Euclidean Ap
- type: max_accuracy
value: 0.9478260869565217
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.603110313415527
name: Max Accuracy Threshold
- type: max_f1
value: 0.9558823529411764
name: Max F1
- type: max_f1_threshold
value: 12.660685539245605
name: Max F1 Threshold
- type: max_precision
value: 0.9154929577464789
name: Max Precision
- type: max_recall
value: 1.0
name: Max Recall
- type: max_ap
value: 0.9777355464218691
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.9478260869565217
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7873066663742065
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9558823529411764
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6542514562606812
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9154929577464789
name: Cosine Precision
- type: cosine_recall
value: 1.0
name: Cosine Recall
- type: cosine_ap
value: 0.9776721343444097
name: Cosine Ap
- type: dot_accuracy
value: 0.9478260869565217
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.7873067259788513
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9558823529411764
name: Dot F1
- type: dot_f1_threshold
value: 0.6542515158653259
name: Dot F1 Threshold
- type: dot_precision
value: 0.9154929577464789
name: Dot Precision
- type: dot_recall
value: 1.0
name: Dot Recall
- type: dot_ap
value: 0.9776721343444097
name: Dot Ap
- type: manhattan_accuracy
value: 0.9478260869565217
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 11.123205184936523
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9558823529411764
name: Manhattan F1
- type: manhattan_f1_threshold
value: 12.862250328063965
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9154929577464789
name: Manhattan Precision
- type: manhattan_recall
value: 1.0
name: Manhattan Recall
- type: manhattan_ap
value: 0.9774497925836063
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9478260869565217
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.652188777923584
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9558823529411764
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.8315430879592896
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9154929577464789
name: Euclidean Precision
- type: euclidean_recall
value: 1.0
name: Euclidean Recall
- type: euclidean_ap
value: 0.9776721343444097
name: Euclidean Ap
- type: max_accuracy
value: 0.9478260869565217
name: Max Accuracy
- type: max_accuracy_threshold
value: 11.123205184936523
name: Max Accuracy Threshold
- type: max_f1
value: 0.9558823529411764
name: Max F1
- type: max_f1_threshold
value: 12.862250328063965
name: Max F1 Threshold
- type: max_precision
value: 0.9154929577464789
name: Max Precision
- type: max_recall
value: 1.0
name: Max Recall
- type: max_ap
value: 0.9776721343444097
name: Max Ap
---
# SentenceTransformer based on intfloat/multilingual-e5-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_2")
# Run inference
sentences = [
'How do you make a paper boat?',
'How do you make a paper airplane?',
'What are the benefits of using solar energy?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `pair-class-dev`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.9478 |
| cosine_accuracy_threshold | 0.6633 |
| cosine_f1 | 0.9559 |
| cosine_f1_threshold | 0.6633 |
| cosine_precision | 0.9155 |
| cosine_recall | 1.0 |
| cosine_ap | 0.9777 |
| dot_accuracy | 0.9478 |
| dot_accuracy_threshold | 0.6633 |
| dot_f1 | 0.9559 |
| dot_f1_threshold | 0.6633 |
| dot_precision | 0.9155 |
| dot_recall | 1.0 |
| dot_ap | 0.9777 |
| manhattan_accuracy | 0.9391 |
| manhattan_accuracy_threshold | 9.6031 |
| manhattan_f1 | 0.9489 |
| manhattan_f1_threshold | 12.6607 |
| manhattan_precision | 0.9028 |
| manhattan_recall | 1.0 |
| manhattan_ap | 0.9756 |
| euclidean_accuracy | 0.9478 |
| euclidean_accuracy_threshold | 0.8205 |
| euclidean_f1 | 0.9559 |
| euclidean_f1_threshold | 0.8205 |
| euclidean_precision | 0.9155 |
| euclidean_recall | 1.0 |
| euclidean_ap | 0.9777 |
| max_accuracy | 0.9478 |
| max_accuracy_threshold | 9.6031 |
| max_f1 | 0.9559 |
| max_f1_threshold | 12.6607 |
| max_precision | 0.9155 |
| max_recall | 1.0 |
| **max_ap** | **0.9777** |
#### Binary Classification
* Dataset: `pair-class-test`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.9478 |
| cosine_accuracy_threshold | 0.7873 |
| cosine_f1 | 0.9559 |
| cosine_f1_threshold | 0.6543 |
| cosine_precision | 0.9155 |
| cosine_recall | 1.0 |
| cosine_ap | 0.9777 |
| dot_accuracy | 0.9478 |
| dot_accuracy_threshold | 0.7873 |
| dot_f1 | 0.9559 |
| dot_f1_threshold | 0.6543 |
| dot_precision | 0.9155 |
| dot_recall | 1.0 |
| dot_ap | 0.9777 |
| manhattan_accuracy | 0.9478 |
| manhattan_accuracy_threshold | 11.1232 |
| manhattan_f1 | 0.9559 |
| manhattan_f1_threshold | 12.8623 |
| manhattan_precision | 0.9155 |
| manhattan_recall | 1.0 |
| manhattan_ap | 0.9774 |
| euclidean_accuracy | 0.9478 |
| euclidean_accuracy_threshold | 0.6522 |
| euclidean_f1 | 0.9559 |
| euclidean_f1_threshold | 0.8315 |
| euclidean_precision | 0.9155 |
| euclidean_recall | 1.0 |
| euclidean_ap | 0.9777 |
| max_accuracy | 0.9478 |
| max_accuracy_threshold | 11.1232 |
| max_f1 | 0.9559 |
| max_f1_threshold | 12.8623 |
| max_precision | 0.9155 |
| max_recall | 1.0 |
| **max_ap** | **0.9777** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,030 training samples
* Columns: label
, sentence2
, and sentence1
* Approximate statistics based on the first 1000 samples:
| | label | sentence2 | sentence1 |
|:--------|:------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | int | string | string |
| details |
1
| Speed of sound in air
| What is the speed of sound?
|
| 1
| World's most popular tourist destination
| What is the most visited tourist attraction in the world?
|
| 1
| How do I write a resume?
| How do I create a resume?
|
* Loss: [ContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.6,
"size_average": true
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 115 evaluation samples
* Columns: label
, sentence2
, and sentence1
* Approximate statistics based on the first 1000 samples:
| | label | sentence2 | sentence1 |
|:--------|:------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | int | string | string |
| details | 0
| What methods are used to measure a nation's GDP?
| How is the GDP of a country measured?
|
| 0
| What is the currency of Japan?
| What is the currency of China?
|
| 1
| Steps to cultivate tomatoes at home
| How to grow tomatoes in a garden?
|
* Loss: [ContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.6,
"size_average": true
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 2
- `weight_decay`: 0.01
- `num_train_epochs`: 8
- `lr_scheduler_type`: reduce_lr_on_plateau
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters