# GPTQ-for-LLaMA 4 bits quantization of [LLaMA](https://arxiv.org/abs/2302.13971) using [GPTQ](https://arxiv.org/abs/2210.17323) GPTQ is SOTA one-shot weight quantization method **It can be used universally, but it is not the [fastest](https://github.com/qwopqwop200/GPTQ-for-LLaMa/tree/old-cuda) and only supports linux.** **Triton only supports Linux, so if you are a Windows user, please use [WSL2](https://learn.microsoft.com/en-us/windows/wsl/install).** ## News or Update **AutoGPTQ-triton, a packaged version of GPTQ with triton, has been integrated into [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ).** ## Result
LLaMA-7B(click me) | [LLaMA-7B](https://arxiv.org/abs/2302.13971) | Bits | group-size | memory(MiB) | Wikitext2 | checkpoint size(GB) | | -------------------------------------------------- | ---- | ---------- | ----------- | --------- | ------------------- | | FP16 | 16 | - | 13940 | 5.68 | 12.5 | | RTN | 4 | - | - | 6.29 | - | | [GPTQ](https://arxiv.org/abs/2210.17323) | 4 | - | 4740 | 6.09 | 3.5 | | [GPTQ](https://arxiv.org/abs/2210.17323) | 4 | 128 | 4891 | 5.85 | 3.6 | | RTN | 3 | - | - | 25.54 | - | | [GPTQ](https://arxiv.org/abs/2210.17323) | 3 | - | 3852 | 8.07 | 2.7 | | [GPTQ](https://arxiv.org/abs/2210.17323) | 3 | 128 | 4116 | 6.61 | 3.0 |
LLaMA-13B | [LLaMA-13B](https://arxiv.org/abs/2302.13971) | Bits | group-size | memory(MiB) | Wikitext2 | checkpoint size(GB) | | -------------------------------------------------- | ---- | ---------- | ----------- | --------- | ------------------- | | FP16 | 16 | - | OOM | 5.09 | 24.2 | | RTN | 4 | - | - | 5.53 | - | | [GPTQ](https://arxiv.org/abs/2210.17323) | 4 | - | 8410 | 5.36 | 6.5 | | [GPTQ](https://arxiv.org/abs/2210.17323) | 4 | 128 | 8747 | 5.20 | 6.7 | | RTN | 3 | - | - | 11.40 | - | | [GPTQ](https://arxiv.org/abs/2210.17323) | 3 | - | 6870 | 6.63 | 5.1 | | [GPTQ](https://arxiv.org/abs/2210.17323) | 3 | 128 | 7277 | 5.62 | 5.4 |
LLaMA-33B | [LLaMA-33B](https://arxiv.org/abs/2302.13971) | Bits | group-size | memory(MiB) | Wikitext2 | checkpoint size(GB) | | -------------------------------------------------- | ---- | ---------- | ----------- | --------- | ------------------- | | FP16 | 16 | - | OOM | 4.10 | 60.5 | | RTN | 4 | - | - | 4.54 | - | | [GPTQ](https://arxiv.org/abs/2210.17323) | 4 | - | 19493 | 4.45 | 15.7 | | [GPTQ](https://arxiv.org/abs/2210.17323) | 4 | 128 | 20570 | 4.23 | 16.3 | | RTN | 3 | - | - | 14.89 | - | | [GPTQ](https://arxiv.org/abs/2210.17323) | 3 | - | 15493 | 5.69 | 12.0 | | [GPTQ](https://arxiv.org/abs/2210.17323) | 3 | 128 | 16566 | 4.80 | 13.0 |
LLaMA-65B | [LLaMA-65B](https://arxiv.org/abs/2302.13971) | Bits | group-size | memory(MiB) | Wikitext2 | checkpoint size(GB) | | -------------------------------------------------- | ---- | ---------- | ----------- | --------- | ------------------- | | FP16 | 16 | - | OOM | 3.53 | 121.0 | | RTN | 4 | - | - | 3.92 | - | | [GPTQ](https://arxiv.org/abs/2210.17323) | 4 | - | OOM | 3.84 | 31.1 | | [GPTQ](https://arxiv.org/abs/2210.17323) | 4 | 128 | OOM | 3.65 | 32.3 | | RTN | 3 | - | - | 10.59 | - | | [GPTQ](https://arxiv.org/abs/2210.17323) | 3 | - | OOM | 5.04 | 23.6 | | [GPTQ](https://arxiv.org/abs/2210.17323) | 3 | 128 | OOM | 4.17 | 25.6 |
Quantization requires a large amount of CPU memory. However, the memory required can be reduced by using swap memory. Depending on the GPUs/drivers, there may be a difference in performance, which decreases as the model size increases.(https://github.com/IST-DASLab/gptq/issues/1) According to [GPTQ paper](https://arxiv.org/abs/2210.17323), As the size of the model increases, the difference in performance between FP16 and GPTQ decreases. ## Installation If you don't have [conda](https://docs.conda.io/en/latest/miniconda.html), install it first. ``` conda create --name gptq python=3.9 -y conda activate gptq conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia # Or, if you're having trouble with conda, use pip with python3.9: # pip3 install torch torchvision torchaudio git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa cd GPTQ-for-LLaMa pip install -r requirements.txt ``` ## Dependencies * `torch`: tested on v2.0.0+cu117 * `transformers`: tested on v4.28.0.dev0 * `datasets`: tested on v2.10.1 * `safetensors`: tested on v0.3.0 All experiments were run on a single NVIDIA RTX3090. # Language Generation ## LLaMA ``` #convert LLaMA to hf python convert_llama_weights_to_hf.py --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir ./llama-hf # Benchmark language generation with 4-bit LLaMA-7B: # Save compressed model CUDA_VISIBLE_DEVICES=0 python llama.py ${MODEL_DIR} c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save llama7b-4bit-128g.pt # Or save compressed `.safetensors` model CUDA_VISIBLE_DEVICES=0 python llama.py ${MODEL_DIR} c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors llama7b-4bit-128g.safetensors # Benchmark generating a 2048 token sequence with the saved model CUDA_VISIBLE_DEVICES=0 python llama.py ${MODEL_DIR} c4 --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --benchmark 2048 --check # Benchmark FP16 baseline, note that the model will be split across all listed GPUs CUDA_VISIBLE_DEVICES=0,1,2,3,4 python llama.py ${MODEL_DIR} c4 --benchmark 2048 --check # model inference with the saved model CUDA_VISIBLE_DEVICES=0 python llama_inference.py ${MODEL_DIR} --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --text "this is llama" # model inference with the saved model using safetensors loaded direct to gpu CUDA_VISIBLE_DEVICES=0 python llama_inference.py ${MODEL_DIR} --wbits 4 --groupsize 128 --load llama7b-4bit-128g.safetensors --text "this is llama" --device=0 # model inference with the saved model with offload(This is very slow). CUDA_VISIBLE_DEVICES=0 python llama_inference_offload.py ${MODEL_DIR} --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --text "this is llama" --pre_layer 16 It takes about 180 seconds to generate 45 tokens(5->50 tokens) on single RTX3090 based on LLaMa-65B. pre_layer is set to 50. ``` Basically, 4-bit quantization and 128 groupsize are recommended. You can also export quantization parameters with toml+numpy format. ``` CUDA_VISIBLE_DEVICES=0 python llama.py ${MODEL_DIR} c4 --wbits 4 --true-sequential --act-order --groupsize 128 --quant-directory ${TOML_DIR} ``` # Acknowledgements This code is based on [GPTQ](https://github.com/IST-DASLab/gptq) Thanks to Meta AI for releasing [LLaMA](https://arxiv.org/abs/2302.13971), a powerful LLM. Triton GPTQ kernel code is based on [GPTQ-triton](https://github.com/fpgaminer/GPTQ-triton)