File size: 13,666 Bytes
17db2ea 90f46ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import optuna
from transformers import (
AutoTokenizer, AutoModelForCausalLM, TrainingArguments,
Trainer, DataCollatorForLanguageModeling
)
import torch
from datasets import load_dataset
import numpy as np
import gc
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import ConstantKernel, Matern
import matplotlib.pyplot as plt
from scipy.stats import norm
import warnings
warnings.filterwarnings('ignore', category=UserWarning)
from transformers import TrainerCallback
import argparse
# Configuration parameters
num_trials = 10 # Adjust this value to control the number of optimization trials
DATASET = load_dataset("BramVanroy/dolly-15k-dutch", split="train_sft[:1000]")
CONTEXT_WINDOW = 1024
# Initialize tokenizer once
tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-1.2B")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
def prepare_chat_format(examples):
chats = []
for messages in examples['messages']:
try:
chat = tokenizer.apply_chat_template(
messages,
tokenize=True,
max_length=CONTEXT_WINDOW,
truncation=True,
return_tensors=None
)
chats.append(chat)
except Exception as e:
print(f"Error applying chat template: {e}")
print("Fallback format if chat template fails")
text = ""
for message in messages:
role = message["role"]
content = message["content"]
text += f"<|{role}|>\n{content}</s>\n"
chat = tokenizer(
text,
max_length=CONTEXT_WINDOW,
truncation=True,
return_tensors=None
)["input_ids"]
chats.append(chat)
return {"input_ids": chats}
# Prepare dataset once
tokenized_dataset = DATASET.map(
prepare_chat_format,
batched=True,
remove_columns=DATASET.column_names
)
def clear_memory():
"""Clear GPU memory between trials"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
class LossCallback(TrainerCallback):
def __init__(self):
self.losses = []
def on_log(self, args, state, control, logs=None, **kwargs):
if logs is not None and "loss" in logs:
self.losses.append(logs["loss"])
def objective(trial):
# Clear memory from previous trial
clear_memory()
lr = trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True)
# Initialize model with fresh state
torch.manual_seed(42)
model = AutoModelForCausalLM.from_pretrained(
"Zyphra/Zamba2-1.2B",
torch_dtype=torch.bfloat16,
device_map="auto"
)
model.config.pad_token_id = tokenizer.pad_token_id
# Calculate steps with larger batch size
batch_size = 4 # Increased from 1
grad_accum_steps = 8 # Decreased from 32 since we increased batch size
effective_batch_size = batch_size * grad_accum_steps # Still 32 total
total_steps = len(tokenized_dataset) // effective_batch_size
# Training arguments
training_args = TrainingArguments(
output_dir=f"./optuna_runs/trial_{trial.number}",
num_train_epochs=1,
per_device_train_batch_size=batch_size, # Increased
gradient_accumulation_steps=grad_accum_steps, # Decreased
logging_steps=max(total_steps // 20, 1),
learning_rate=lr,
weight_decay=0.01,
fp16=False,
bf16=True,
warmup_steps=total_steps // 10,
save_steps=1000000,
save_total_limit=None,
report_to="none",
seed=42,
dataloader_num_workers=4, # Added for faster data loading
gradient_checkpointing=True, # Added to optimize memory usage
max_grad_norm=1.0 # Added for stability
)
print(f"\nTrial {trial.number}:")
print(f"Learning rate: {lr}")
print(f"Total steps: {total_steps}")
print(f"Logging every {training_args.logging_steps} steps")
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
class CustomTrainer(Trainer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model = model
def _move_model_to_device(self, model, device):
pass
# Initialize callback
loss_callback = LossCallback()
trainer = CustomTrainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
data_collator=data_collator,
callbacks=[loss_callback] # Use the proper callback
)
try:
train_result = trainer.train()
# Calculate mean of last 20% of losses
losses = loss_callback.losses # Get losses from callback
n_losses = max(len(losses) // 5, 1)
final_losses = losses[-n_losses:]
mean_loss = np.mean(final_losses) if final_losses else float('inf')
# Clean up
del model
del trainer
clear_memory()
return mean_loss
except Exception as e:
print(f"Trial failed with error: {e}")
# Clean up on failure
del model
del trainer
clear_memory()
return float('inf')
# Create and run the study
study = optuna.create_study(
direction="minimize",
sampler=optuna.samplers.TPESampler(seed=42),
study_name="learning_rate_optimization"
)
study.optimize(objective, n_trials=num_trials)
# Print results
print(f"\nOptimization Results ({num_trials} trials):")
print("Best learning rate:", study.best_params["learning_rate"])
print("Best loss:", study.best_value)
print("\nAll trials:")
for trial in study.trials:
print(f"Learning rate: {trial.params['learning_rate']:.2e}, Loss: {trial.value:.4f}")
# Save results
import json
results = {
"best_learning_rate": study.best_params["learning_rate"],
"best_loss": study.best_value,
"all_trials": [(trial.params["learning_rate"], trial.value) for trial in study.trials]
}
with open("lr_optimization_results.json", "w") as f:
json.dump(results, f, indent=4)
# Plot optimization history
try:
fig = optuna.visualization.plot_optimization_history(study)
fig.show()
except Exception as e:
print(f"Could not create visualization: {e}")
# Add sophisticated final optimization using Gaussian Process Regression
def optimize_final_lr(study):
try:
# Extract learning rates and losses
X = np.array([[trial.params['learning_rate']] for trial in study.trials])
y = np.array([trial.value for trial in study.trials])
# Check if we have any valid results
valid_mask = np.isfinite(y)
if not np.any(valid_mask):
print("No valid trials found. Returning default learning rate.")
return {
'gpr_optimal_lr': 2e-5, # default fallback
'ei_optimal_lr': 2e-5,
'predicted_loss': float('inf'),
'uncertainty': float('inf')
}
# Filter out infinite values
X = X[valid_mask]
y = y[valid_mask]
# Ensure we have enough points for fitting
if len(X) < 2:
print("Not enough valid trials for GPR. Returning best observed value.")
best_idx = np.argmin(y)
return {
'gpr_optimal_lr': float(X[best_idx][0]),
'ei_optimal_lr': float(X[best_idx][0]),
'predicted_loss': float(y[best_idx]),
'uncertainty': float('inf')
}
# Transform to log space
X_log = np.log10(X)
# Normalize y values
y_mean = np.mean(y)
y_std = np.std(y)
if y_std == 0:
y_std = 1
y_normalized = (y - y_mean) / y_std
# Define kernel
kernel = ConstantKernel(1.0) * Matern(length_scale=1.0, nu=2.5)
# Fit Gaussian Process
gpr = GaussianProcessRegressor(
kernel=kernel,
n_restarts_optimizer=10,
random_state=42,
normalize_y=False # we're manually normalizing
)
try:
gpr.fit(X_log, y_normalized)
except np.linalg.LinAlgError:
print("GPR fitting failed. Returning best observed value.")
best_idx = np.argmin(y)
return {
'gpr_optimal_lr': float(X[best_idx][0]),
'ei_optimal_lr': float(X[best_idx][0]),
'predicted_loss': float(y[best_idx]),
'uncertainty': float('inf')
}
# Create fine grid of points for prediction
X_pred_log = np.linspace(np.log10(X.min()), np.log10(X.max()), 1000).reshape(-1, 1)
# Predict mean and std
y_pred_normalized, sigma = gpr.predict(X_pred_log, return_std=True)
# Denormalize predictions
y_pred = y_pred_normalized * y_std + y_mean
sigma = sigma * y_std
# Find the point with lowest predicted value
best_idx = np.argmin(y_pred)
optimal_lr = 10 ** X_pred_log[best_idx, 0]
# Calculate acquisition function (Expected Improvement)
best_f = np.min(y)
Z = (best_f - y_pred) / (sigma + 1e-9) # add small constant to prevent division by zero
ei = sigma * (Z * norm.cdf(Z) + norm.pdf(Z))
# Find point with highest expected improvement
ei_best_idx = np.argmax(ei)
ei_optimal_lr = 10 ** X_pred_log[ei_best_idx, 0]
return {
'gpr_optimal_lr': float(optimal_lr),
'ei_optimal_lr': float(ei_optimal_lr),
'predicted_loss': float(y_pred[best_idx]),
'uncertainty': float(sigma[best_idx])
}
except Exception as e:
print(f"Optimization failed with error: {e}")
return {
'gpr_optimal_lr': 2e-5, # default fallback
'ei_optimal_lr': 2e-5,
'predicted_loss': float('inf'),
'uncertainty': float('inf')
}
# Run final optimization and handle potential failures
try:
final_optimization = optimize_final_lr(study)
print("\nAdvanced Optimization Results:")
print(f"GPR Optimal Learning Rate: {final_optimization['gpr_optimal_lr']:.2e}")
print(f"Expected Improvement Optimal Learning Rate: {final_optimization['ei_optimal_lr']:.2e}")
print(f"Predicted Loss: {final_optimization['predicted_loss']:.4f}")
print(f"Uncertainty: {final_optimization['uncertainty']:.4f}")
except Exception as e:
print(f"Final optimization failed: {e}")
final_optimization = {
'gpr_optimal_lr': 2e-5,
'ei_optimal_lr': 2e-5,
'predicted_loss': float('inf'),
'uncertainty': float('inf')
}
# Save extended results
results.update({
"gpr_optimal_lr": float(final_optimization['gpr_optimal_lr']),
"ei_optimal_lr": float(final_optimization['ei_optimal_lr']),
"predicted_loss": float(final_optimization['predicted_loss']),
"uncertainty": float(final_optimization['uncertainty'])
})
# Visualization of the GPR results
def plot_gpr_results(study, final_optimization):
# Extract data and filter out infinite values
X = np.array([[trial.params['learning_rate']] for trial in study.trials])
y = np.array([trial.value for trial in study.trials])
# Create mask for finite values
finite_mask = np.isfinite(y)
X = X[finite_mask]
y = y[finite_mask]
# Check if we have enough valid points
if len(X) < 2:
print("Not enough valid points for GPR visualization")
return
# Create prediction points
X_pred = np.logspace(np.log10(X.min()), np.log10(X.max()), 100).reshape(-1, 1)
X_pred_log = np.log10(X_pred)
# Fit GPR for plotting
kernel = ConstantKernel(1.0) * Matern(length_scale=1.0, nu=2.5)
gpr = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=10, random_state=42)
gpr.fit(np.log10(X), y)
# Predict mean and std
y_pred, sigma = gpr.predict(X_pred_log, return_std=True)
plt.figure(figsize=(12, 6))
plt.semilogx(X, y, 'ko', label='Valid Trials', markersize=8)
plt.semilogx(X_pred, y_pred, 'b-', label='GPR Mean')
plt.fill_between(X_pred.ravel(),
y_pred - 2*sigma,
y_pred + 2*sigma,
color='blue',
alpha=0.2,
label='95% Confidence')
# Only plot optimal lines if they are finite
if np.isfinite(final_optimization['gpr_optimal_lr']):
plt.axvline(final_optimization['gpr_optimal_lr'], color='r', linestyle='--',
label='GPR Optimal LR')
if np.isfinite(final_optimization['ei_optimal_lr']):
plt.axvline(final_optimization['ei_optimal_lr'], color='g', linestyle='--',
label='EI Optimal LR')
plt.xlabel('Learning Rate')
plt.ylabel('Loss')
plt.title('Learning Rate Optimization Results with GPR')
plt.legend()
plt.grid(True)
plt.savefig('lr_optimization_plot.png', dpi=300, bbox_inches='tight')
plt.close()
plot_gpr_results(study, final_optimization)
# Save all results
with open("lr_optimization_results.json", "w") as f:
json.dump(results, f, indent=4)
# Store best learning rate as a variable for finetune.py to use
best_lr = study.best_params["learning_rate"] |