sswt commited on
Commit
a16a14b
1 Parent(s): 1f3aa76

Upload PPO LunarLander-v2 trained agent from unit 1

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: -59.52 +/- 15.06
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
28
-
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'ppo'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': False
36
- 'wandb_project_name': 'cleanRL'
37
- 'wandb_entity': None
38
- 'capture_video': False
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 500000
41
- 'learning_rate': 0.00025
42
- 'num_envs': 10
43
- 'num_steps': 128
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.99
47
- 'gae_lambda': 0.95
48
- 'num_minibatches': 4
49
- 'update_epochs': 4
50
- 'norm_adv': True
51
- 'clip_coef': 0.2
52
- 'clip_vloss': True
53
- 'ent_coef': 0.01
54
- 'vf_coef': 0.5
55
- 'max_grad_norm': 0.5
56
- 'target_kl': None
57
- 'repo_id': 'sswt/ppo-LunarLander-v2'
58
- 'batch_size': 1280
59
- 'minibatch_size': 320}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 261.18 +/- 34.98
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f19c419f680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19c419f710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19c419f7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19c419f830>", "_build": "<function ActorCriticPolicy._build at 0x7f19c419f8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f19c419f950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19c419f9e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f19c419fa70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19c419fb00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19c419fb90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19c419fc20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f19c41ee600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652180073.0694616, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObUJD6zwI8/PjwJPzM8Db84HJs+dgXzPgAAAAAAAAAA2vg7vtALiD/q292+eukhvyAWyL6sEpS+AAAAAAAAAAAzCcg86S5/vMSlxD0F8d87CKqdvZ0dh74AAIA/AACAPzOOkDzDNXK6Xb8qNURYPDCjbDY7xX5WtAAAgD8AAIA/mhESPc/cFLxbCLW9J1WiPErdbz1oaoa9AACAPwAAgD/gJoc+/04fP8DO9bwAiEO/36D3PiUVT74AAAAAAAAAADMxaDx7tpu6UlaNtJ7SErDTAp25CpeCMwAAgD8AAIA/ZsIhPnzpSz67ctq+Z/4hv62CDzu245K+AAAAAAAAAAAaNHg+yTWQP7OGtj4tcSK/r6AFP9a5cj4AAAAAAAAAAI1eCz5IaNE9NSrqvrxlz762yLK9AoJrvgAAAAAAAAAAmjFGPPZcbboAZzwzww+qr6luC7nKKcqzAACAPwAAgD+aCYi8w89ovJbA6ztsR7E8gRvRPRZLjr0AAIA/AACAPzNdsrx7XpO6SLbrupUe5LVEilO54WIIOgAAgD8AAIA/hhxMvghD0j4TMdk+zvw+v2Ic/r0FlYg+AAAAAAAAAAAAIDS7pPkIuyryK70BWsU8I34DPO6UqL0AAIA/AACAPyYmzz0ojA4/rentvWEkUL8bGi8+2iYMvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZY9QMyRSc0CUhpRSlIwBbJRLq4wBdJRHQMMh4kWZZ0V1fZQoaAZoCWgPQwgi/mFLD8RxQJSGlFKUaBVLrmgWR0DDIe19roGIdX2UKGgGaAloD0MIJJwWvOgXcUCUhpRSlGgVS6doFkdAwyH71nuiOHV9lChoBmgJaA9DCFjmrbpOi3NAlIaUUpRoFUu8aBZHQMMiBFTm4iJ1fZQoaAZoCWgPQwgbu0T11ilzQJSGlFKUaBVLwGgWR0DDIgPyiEg4dX2UKGgGaAloD0MIH6FmSBVtckCUhpRSlGgVS7NoFkdAwyIGophF3XV9lChoBmgJaA9DCHjuPVwyW3JAlIaUUpRoFUu4aBZHQMMiClQEZBN1fZQoaAZoCWgPQwiZucDlMfxyQJSGlFKUaBVLu2gWR0DDIg1Ey+HrdX2UKGgGaAloD0MItCCU9/Fxc0CUhpRSlGgVS7VoFkdAwyIZwb2lEnV9lChoBmgJaA9DCPjFpSot53NAlIaUUpRoFU2gAWgWR0DDIhur2g3+dX2UKGgGaAloD0MI71aW6Oz/cUCUhpRSlGgVS5doFkdAwyx13VTaTXV9lChoBmgJaA9DCOyGbYuyb3FAlIaUUpRoFUugaBZHQMMskA5zYEp1fZQoaAZoCWgPQwjDYtS19hx0QJSGlFKUaBVLtWgWR0DDLJSlN1yOdX2UKGgGaAloD0MIfT81Xjo1dECUhpRSlGgVS9doFkdAwyyo1SflIXV9lChoBmgJaA9DCKgBg6QPO3NAlIaUUpRoFUu/aBZHQMMsq5mZmZp1fZQoaAZoCWgPQwhcy2Q4HmVyQJSGlFKUaBVLxGgWR0DDLKqisXBQdX2UKGgGaAloD0MIQBU3bjGNckCUhpRSlGgVS5JoFkdAwyzcLsrupnV9lChoBmgJaA9DCBhcc0f/SHJAlIaUUpRoFUu9aBZHQMMs3G5lOGl1fZQoaAZoCWgPQwiBk23gTmtxQJSGlFKUaBVLnWgWR0DDLOBl4C6pdX2UKGgGaAloD0MI9tIUAc65cUCUhpRSlGgVS7xoFkdAwyzl7el9B3V9lChoBmgJaA9DCILK+PfZxnFAlIaUUpRoFUuYaBZHQMMs8cX3xnZ1fZQoaAZoCWgPQwgC9Pv+DWNyQJSGlFKUaBVLq2gWR0DDLPTLOiWWdX2UKGgGaAloD0MIH7+36U8PdECUhpRSlGgVS7RoFkdAwyz2Jyhi9nV9lChoBmgJaA9DCHbj3ZExyHNAlIaUUpRoFUvGaBZHQMMs+0+LWI51fZQoaAZoCWgPQwhX6lkQCoxzQJSGlFKUaBVLwWgWR0DDLP2Ur08OdX2UKGgGaAloD0MICJPi4xPwcUCUhpRSlGgVS4RoFkdAwyz/ovi97HV9lChoBmgJaA9DCCyAKQNHZ3NAlIaUUpRoFUvCaBZHQMMtEkdmxt51fZQoaAZoCWgPQwgGnnsP1x1yQJSGlFKUaBVL1WgWR0DDLSL6DXe4dX2UKGgGaAloD0MIz7wcdh+ZcUCUhpRSlGgVS65oFkdAwy041VHWjHV9lChoBmgJaA9DCChDVUwlv3FAlIaUUpRoFUu0aBZHQMMtPEcsDnx1fZQoaAZoCWgPQwind/F+XFVxQJSGlFKUaBVLxGgWR0DDLUzC+De1dX2UKGgGaAloD0MIwCDp02qfckCUhpRSlGgVS41oFkdAwy1OcCo0h3V9lChoBmgJaA9DCI5XIHpSjEFAlIaUUpRoFUtmaBZHQMMtUY6fapR1fZQoaAZoCWgPQwiXVkPiHt9yQJSGlFKUaBVL52gWR0DDLVOIhyKfdX2UKGgGaAloD0MIXOSerq7VcUCUhpRSlGgVS5JoFkdAwy1pfLLZBnV9lChoBmgJaA9DCFqg3SHFO3NAlIaUUpRoFUuwaBZHQMMtbjmCAc11fZQoaAZoCWgPQwgaGk8EcfdvQJSGlFKUaBVLn2gWR0DDLXSdFvycdX2UKGgGaAloD0MIBd80fbbvcECUhpRSlGgVS69oFkdAwy1zriVB2XV9lChoBmgJaA9DCJeQD3o2M3JAlIaUUpRoFUu1aBZHQMMtgpfhMrV1fZQoaAZoCWgPQwiV1Alo4jV0QJSGlFKUaBVL3GgWR0DDLY6tNi6QdX2UKGgGaAloD0MILSRgdHlwckCUhpRSlGgVS7toFkdAwy2Ru8brC3V9lChoBmgJaA9DCEHWU6vvo3FAlIaUUpRoFUu2aBZHQMMtkFq8Djl1fZQoaAZoCWgPQwgxthDkIDByQJSGlFKUaBVLmGgWR0DDLaEEzO5bdX2UKGgGaAloD0MIrRiuDoBGSkCUhpRSlGgVS3NoFkdAwy2xytmthnV9lChoBmgJaA9DCAg8MIDw5HJAlIaUUpRoFUvGaBZHQMMttZnUUfx1fZQoaAZoCWgPQwj0UNuGUe5wQJSGlFKUaBVLoWgWR0DDLcDnaFmGdX2UKGgGaAloD0MIYcWp1sKUcECUhpRSlGgVS6doFkdAwy3CicG1QnV9lChoBmgJaA9DCOvE5XjFH3JAlIaUUpRoFUuVaBZHQMMtx/gaWHF1fZQoaAZoCWgPQwg2BTI7CxRxQJSGlFKUaBVLrGgWR0DDLd6zZ6D5dX2UKGgGaAloD0MI3q8CfDejc0CUhpRSlGgVS7hoFkdAwy3kHFglW3V9lChoBmgJaA9DCG6/fLLimnNAlIaUUpRoFUu8aBZHQMMuDbMHKOl1fZQoaAZoCWgPQwjb3JieMDVyQJSGlFKUaBVLu2gWR0DDLhHdXT3JdX2UKGgGaAloD0MIiWGHMWnDc0CUhpRSlGgVS8BoFkdAwy4XHe7+UHV9lChoBmgJaA9DCMXjolrEcnJAlIaUUpRoFUuzaBZHQMMuG6X0Gu91fZQoaAZoCWgPQwjaU3JO7BVyQJSGlFKUaBVLp2gWR0DDLh94qwyJdX2UKGgGaAloD0MI1EZ1OhBLckCUhpRSlGgVS5VoFkdAwy4hk078vXV9lChoBmgJaA9DCMy209YIfXJAlIaUUpRoFUuvaBZHQMMuJMZ5zHV1fZQoaAZoCWgPQwgcCwqD8odxQJSGlFKUaBVLh2gWR0DDLiqpzcREdX2UKGgGaAloD0MIokRLHg9nckCUhpRSlGgVS4doFkdAwy42s4ku6HV9lChoBmgJaA9DCJ7RViXRTHRAlIaUUpRoFUvBaBZHQMMuN1hb4ah1fZQoaAZoCWgPQwjhmjv63+pyQJSGlFKUaBVLmmgWR0DDLjcKG+K1dX2UKGgGaAloD0MIUDi7tUw9dECUhpRSlGgVTQUBaBZHQMMuSBF/hEV1fZQoaAZoCWgPQwj1K50PDzhyQJSGlFKUaBVLpmgWR0DDLlcIPbwjdX2UKGgGaAloD0MIyVUsftOpc0CUhpRSlGgVS7VoFkdAwy5di1Aqu3V9lChoBmgJaA9DCECKOnNPW3FAlIaUUpRoFUusaBZHQMMuc5vDP4V1fZQoaAZoCWgPQwh4YADhA7hxQJSGlFKUaBVLsmgWR0DDLn4mZ3LWdX2UKGgGaAloD0MIv0aSINxcc0CUhpRSlGgVS6BoFkdAwy6VyhBZ6nV9lChoBmgJaA9DCNRfr7AgwnBAlIaUUpRoFUuraBZHQMMuqFAE+xJ1fZQoaAZoCWgPQwi/f/PihAByQJSGlFKUaBVLo2gWR0DDLq0RUWEcdX2UKGgGaAloD0MI3q8CfLegc0CUhpRSlGgVS8FoFkdAwy64VO9FnnV9lChoBmgJaA9DCKCM8WG2i3NAlIaUUpRoFUuyaBZHQMMuuVQZXMh1fZQoaAZoCWgPQwgKoYMuIVVyQJSGlFKUaBVLtGgWR0DDLsWPzWf9dX2UKGgGaAloD0MIXAUx0PUtckCUhpRSlGgVS79oFkdAwy7JLuhK2HV9lChoBmgJaA9DCDW4rS28MXRAlIaUUpRoFUuuaBZHQMMuzPz4DcN1fZQoaAZoCWgPQwj8x0J0iOZxQJSGlFKUaBVL3WgWR0DDLtmpAD7qdX2UKGgGaAloD0MIVMN+T2zbckCUhpRSlGgVS61oFkdAwy7ddAPd23V9lChoBmgJaA9DCHGsi9to6HNAlIaUUpRoFUvQaBZHQMMu6XMQmNR1fZQoaAZoCWgPQwhlUkMbACBzQJSGlFKUaBVL2GgWR0DDLu+Ef1YhdX2UKGgGaAloD0MIB5rPuVtIcUCUhpRSlGgVS7BoFkdAwy7vedCmdnV9lChoBmgJaA9DCLvSMlJvWnRAlIaUUpRoFUuuaBZHQMMu9QM6RyR1fZQoaAZoCWgPQwigbqDAezhxQJSGlFKUaBVLqWgWR0DDLwTwc5sCdX2UKGgGaAloD0MIZysv+R+5c0CUhpRSlGgVS8VoFkdAwy8mZ4wAVHV9lChoBmgJaA9DCJOmQdF8BnFAlIaUUpRoFUuraBZHQMMvJ5pi7TV1fZQoaAZoCWgPQwghWcAE7lBzQJSGlFKUaBVLomgWR0DDLzIkZ75VdX2UKGgGaAloD0MIngyOkpfCcECUhpRSlGgVS51oFkdAwy88ONHYpXV9lChoBmgJaA9DCL9FJ0stjXFAlIaUUpRoFUuraBZHQMMvSR95Qgt1fZQoaAZoCWgPQwjDf7qBAgNvQJSGlFKUaBVLpGgWR0DDL0+VJL/TdX2UKGgGaAloD0MIW+z2WeXtckCUhpRSlGgVS8JoFkdAwy9RoysS03V9lChoBmgJaA9DCBxhURHnd3NAlIaUUpRoFUunaBZHQMMvVZuIhyN1fZQoaAZoCWgPQwiWmGclLXlxQJSGlFKUaBVLpWgWR0DDL2aDIzWPdX2UKGgGaAloD0MIcm4T7hUbc0CUhpRSlGgVS6toFkdAwy9nybx3FHV9lChoBmgJaA9DCFFqL6Jt7nNAlIaUUpRoFUvDaBZHQMMvbnZ00WN1fZQoaAZoCWgPQwgRUrezLzdyQJSGlFKUaBVLpGgWR0DDL3FB8hLXdX2UKGgGaAloD0MIz4WRXpRzc0CUhpRSlGgVS6JoFkdAwy91N1QqJHV9lChoBmgJaA9DCOWzPA9uFnNAlIaUUpRoFUusaBZHQMMvfUwaisZ1fZQoaAZoCWgPQwi77q1IzBlwQJSGlFKUaBVLqGgWR0DDL41JcxCZdX2UKGgGaAloD0MIc2cmGE51cUCUhpRSlGgVS8JoFkdAwy+SBJ7LMnV9lChoBmgJaA9DCFyPwvVoKnNAlIaUUpRoFUuaaBZHQMMvossH0K91fZQoaAZoCWgPQwjfwyXHXb5wQJSGlFKUaBVLnWgWR0DDL69YyO7ydX2UKGgGaAloD0MI9WVppyZtcUCUhpRSlGgVS7JoFkdAwy+1HbRF7XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3070, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b5bdd651360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b5bdd6513f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b5bdd651480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b5bdd651510>", "_build": "<function ActorCriticPolicy._build at 0x7b5bdd6515a0>", "forward": "<function ActorCriticPolicy.forward at 0x7b5bdd651630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b5bdd6516c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b5bdd651750>", "_predict": "<function ActorCriticPolicy._predict at 0x7b5bdd6517e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b5bdd651870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b5bdd651900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b5bdd651990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b5bdd602a80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727359800800926978, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACBhRD6nM18/6nZGPuMtF7+xlqQ+JQ8vvgAAAAAAAAAAmr9kPFQWrj8kqKs+Hcgav+fPhLvBpSE9AAAAAAAAAAAzI9y74ZqVurgC9LMAH7mv3EwYO1bnvjMAAIA/AACAP8BJKr6hjYu80tmJOluUzTh5//k9Fhy8uQAAgD8AAIA/WnjKvdYbHz0kvy0+16afvpUXQT0l+5a8AAAAAAAAAAA6uBQ+DLlqPgKCbr4M/C++c4uPvQ7rAz0AAAAAAAAAAE0aqL0UJoe6MNK9PD1Z4TUD2BY7Q8HdNAAAAAAAAAAAJm7JPdd4P7tz8HG93+2EPKuDgjxoZGW9AAAAAAAAgD/N/LQ9wj16P+tX3z1WuOi+rVLPPcKS/zwAAAAAAAAAAK1TKr4DxWa8hDfLu2LJNbqWIsc9jaETOwAAgD8AAIA/pgyBPqeblD+z15E+8dL/vvHdcT5BFjm9AAAAAAAAAADtExI+1+EzuwJPuL11Gyy+4xUbPCIs+zwAAAAAAACAP2YSHb2gV8A/nnGqvsN1cz41vom7DLeNvQAAAAAAAAAAwIYdPlywZLwAKGw7xy1iufj4wr1aUom6AACAPwAAgD8GVgw+hSDfu4PdgTyjjAS7M5dFvUNh3bsAAIA/AACAP437Sr4xpC0/RY23vRLt1L4LPxa+EI3tPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/mKtHQQcyMAWyUS++MAXSUR0CaFE3XI2fkdX2UKGgGR0BxD0L2HtWuaAdNLQFoCEdAmhX72pQ1rXV9lChoBkdAbz1NUOuq3mgHTQABaAhHQJoYDA57w8Z1fZQoaAZHQHB1GkrPMStoB00CAWgIR0CaGDMJhOQAdX2UKGgGR0BscU4xUNrkaAdL52gIR0CaGjFkhA4XdX2UKGgGR0Bw5M9TxXnyaAdL6WgIR0CaGqS75Ec9dX2UKGgGR0Bxx8x59mYjaAdNJAFoCEdAmhx2xUvPC3V9lChoBkdAcBzJDE3sHGgHS+xoCEdAmhzNfG+9J3V9lChoBkdAcXZ4lyBClmgHS+JoCEdAmh0IF/x2CHV9lChoBkdAcU2ycTakAWgHS9poCEdAmh1U8Rtgr3V9lChoBkdAcIBnTRYzSGgHTQQBaAhHQJodrqW1MM91fZQoaAZHQHBjJs0pEx9oB0v/aAhHQJoeQ7T2FnJ1fZQoaAZHQGzsKrilzltoB0v2aAhHQJofp97Wuox1fZQoaAZHQG/3/p+tr9FoB0vWaAhHQJogFkjHGS91fZQoaAZHQHDT9HUc4o9oB0viaAhHQJoglO58Sf11fZQoaAZHQGYAOeJ53TxoB03oA2gIR0CaImG8274BdX2UKGgGR0Burs2R7qptaAdL72gIR0CaIpIHkcS5dX2UKGgGR0Bx+y03Ov+waAdL3WgIR0CaJIXkYGdJdX2UKGgGR0Bih//m1YyPaAdN6ANoCEdAmiSRZha1TnV9lChoBkdAcFo1loUSI2gHS9toCEdAmiT49X9zfnV9lChoBkdAcbN+mm+Cb2gHS/9oCEdAmiVgUQCjlHV9lChoBkdAcOEW912aD2gHS/JoCEdAmiV0RJ2+wnV9lChoBkdAcWBjENvwVmgHS/JoCEdAmiYRSk0rLHV9lChoBkdAcBPbpNbkfmgHS/xoCEdAmibyIgvDg3V9lChoBkdAcVt6qbSZ0GgHS+BoCEdAmidVzQu27XV9lChoBkdAcpOy+Yc/+2gHTQABaAhHQJoo1mbsniN1fZQoaAZHQHBLkDlo11poB0vraAhHQJoqhv5xiod1fZQoaAZHQHIiJVOsT39oB0v7aAhHQJorU1XNke91fZQoaAZHQHAvyyyD7IloB0vlaAhHQJosqvaDf3x1fZQoaAZHQHDOH1rZampoB0vqaAhHQJos0zsQd0d1fZQoaAZHQHKUj9CNS61oB0vYaAhHQJotLqeK8+R1fZQoaAZHQG/xVc+qzZ9oB0viaAhHQJotgCcPOIJ1fZQoaAZHQHH8IF3Y+StoB0vvaAhHQJou1RwZOzp1fZQoaAZHQHG/lzZHuqpoB00PAWgIR0CaLtZ/Tb35dX2UKGgGR0BxhdGd7OVxaAdL3WgIR0CaLykuYhMbdX2UKGgGR0Bj+bBMzuWsaAdN6ANoCEdAmi9HjIaLoHV9lChoBkdAZWB+KjzqbGgHTegDaAhHQJovaAy2x6h1fZQoaAZHQHGQStRvWH1oB0vuaAhHQJowFXo1UER1fZQoaAZHQHFQWcjJMg5oB0v6aAhHQJox5UKiPAB1fZQoaAZHQHELoHC4z8BoB0vWaAhHQJoyRTyauwJ1fZQoaAZHQHBpd0eU6gdoB0vdaAhHQJozMiSq2jR1fZQoaAZHQEqlafzz3AVoB0vDaAhHQJoz4j3VTaV1fZQoaAZHQHKWfu9eyAxoB03vAmgIR0CaNQPEbYK6dX2UKGgGR0BuIWUD+zdDaAdL5GgIR0CaNU6QNkOJdX2UKGgGR0Bw10kAxSHeaAdNAQFoCEdAmjWU1ZTya3V9lChoBkdAcSlJzT4L1GgHTQgBaAhHQJo1634Kx9p1fZQoaAZHQHD+BybQTmJoB0vZaAhHQJo2A08/2TR1fZQoaAZHQHB+97OVxCJoB0vTaAhHQJo2GzLOiWV1fZQoaAZHQGIWSrYGt6poB03oA2gIR0CaNrYwZflZdX2UKGgGR0Bta3EdeY2LaAdL6mgIR0CaNuHavicYdX2UKGgGR0BtvZVlwtJ4aAdL72gIR0CaNxeD3/PxdX2UKGgGR0ByFI20iQkpaAdNFQFoCEdAmjegoLG7z3V9lChoBkdAcAyhzeXRgWgHS/1oCEdAmjf5JPIn0HV9lChoBkdAbaWXenAIp2gHS+ZoCEdAmjjP8hs673V9lChoBkdAcIYmRNh3JWgHTQgBaAhHQJo6Ieii7Cl1fZQoaAZHQHJpve1rqMZoB0viaAhHQJo6ekBS1md1fZQoaAZHQHKKd8Aq/dtoB0vpaAhHQJo74soUi6h1fZQoaAZHQHLuOcc2itdoB0vVaAhHQJo781n/T9d1fZQoaAZHQG9MnGbTc7BoB0v2aAhHQJo8A3XI2fl1fZQoaAZHQHA/V7laKUFoB0v2aAhHQJo8hpWV/tp1fZQoaAZHQG9EmKQ7tAtoB0vbaAhHQJo9PZ+QU6B1fZQoaAZHQG2bs052hZhoB0vnaAhHQJo9WGIsRQJ1fZQoaAZHQHKA9WluWKNoB00UAWgIR0CaPeHI6r/9dX2UKGgGR0BxZULE1l5GaAdNAQFoCEdAmj3pMHryD3V9lChoBkdAb1E7YkE9uGgHTR8BaAhHQJo+BLbpNbl1fZQoaAZHQHDDtVR1oxpoB0v1aAhHQJo+/AqNIbx1fZQoaAZHQHJ0VIZqEe1oB00dAWgIR0CaP7Q+EAYIdX2UKGgGR0ByZvhJiAlOaAdL42gIR0CaQK6wMYuTdX2UKGgGR0BdQnwob4rSaAdN6ANoCEdAmkDpC4SYgXV9lChoBkdAbVgdSVGCqmgHS+ZoCEdAmkEU7OmixnV9lChoBkdAcCB9L6DXe2gHS9doCEdAmkIF98Z1m3V9lChoBkdAbkUPU8V58mgHS/FoCEdAmkNgpz90inV9lChoBkdAcNquPmxMWWgHS+ZoCEdAmkOlJtix3XV9lChoBkdAceE8sMAmzGgHS/loCEdAmkOlr2xptnV9lChoBkdAb0nzshPj42gHS9hoCEdAmkT4f0VafXV9lChoBkdAcQzFnZkCm2gHS/BoCEdAmkUOpCKJmHV9lChoBkdAcDdd4FA3UGgHS9VoCEdAmkUPustCiXV9lChoBkdAbTAAxSHdoGgHS/hoCEdAmkV6dlNDdHV9lChoBkdAcn2KB/Zuh2gHS+poCEdAmkWvpljEvXV9lChoBkdAcDhxn3+MqGgHS+hoCEdAmkb8bm2b5XV9lChoBkdAbfUq1gH/tWgHS+xoCEdAmkgqt9x6wHV9lChoBkdAbmzCVrylN2gHS+toCEdAmkok03wTd3V9lChoBkdAcLe1hb4agmgHS/1oCEdAmkqmuDBdlnV9lChoBkdAcoLtQsPJ72gHS+xoCEdAmkudXo1UEXV9lChoBkdAcKyk5ZKWcGgHS9loCEdAmkwUtI0653V9lChoBkdAcZ4Rw6ySm2gHS9NoCEdAmk2ClN1yNnV9lChoBkdAcRq8yN4qw2gHS/RoCEdAmk2EF8ohIXV9lChoBkdAbwrTodMj/2gHS9VoCEdAmk2urIYFaHV9lChoBkdAceKOARTS9mgHS91oCEdAmk5+ANG3F3V9lChoBkdAcUybF0gbImgHS+JoCEdAmk7Ngnc+JXV9lChoBkdAcaMBPKuB+WgHTRkBaAhHQJpO5IlMRHx1fZQoaAZHQHEDShFmWdFoB0v4aAhHQJpO8GD+R5l1fZQoaAZHQHCCwlWwNb1oB0vtaAhHQJpQLlyR0U51fZQoaAZHQG5+eHaews5oB0vbaAhHQJpQhGb1AZ91fZQoaAZHQHGPAjD8+A5oB0vcaAhHQJpTAjv/io91fZQoaAZHQHGLNgF5fMRoB00KAWgIR0CaU9QNCqp+dX2UKGgGR0ByEYVymygPaAdNGgFoCEdAmlP2kep4r3V9lChoBkdAZqP1BdD6WWgHTegDaAhHQJpUKz7di2F1fZQoaAZHQHAP6RdQfp5oB0vyaAhHQJpVTOkcjqx1fZQoaAZHQHGJzOHFglZoB0vmaAhHQJpVhuFYdQx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fc642cba45e845f85a7e7139c4c7c708ad1bfcfdf28685073ccd65e9623c3cbe
3
- size 143988
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c18f7596fee0db82cb4f44d16c5e97e133e6bebb9e9dec449f83618945db7ade
3
+ size 147987
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.5.0
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data CHANGED
@@ -3,60 +3,35 @@
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f19c419f680>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19c419f710>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19c419f7a0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19c419f830>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f19c419f8c0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f19c419f950>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19c419f9e0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f19c419fa70>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19c419fb00>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19c419fb90>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19c419fc20>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f19c41ee600>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
- "observation_space": {
24
- ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
- "dtype": "float32",
27
- "_shape": [
28
- 8
29
- ],
30
- "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
- "high": "[inf inf inf inf inf inf inf inf]",
32
- "bounded_below": "[False False False False False False False False]",
33
- "bounded_above": "[False False False False False False False False]",
34
- "_np_random": null
35
- },
36
- "action_space": {
37
- ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
- "n": 4,
40
- "_shape": [],
41
- "dtype": "int64",
42
- "_np_random": null
43
- },
44
- "n_envs": 16,
45
- "num_timesteps": 3014656,
46
- "_total_timesteps": 3000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1652180073.0694616,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
- "lr_schedule": {
54
- ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
- },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObUJD6zwI8/PjwJPzM8Db84HJs+dgXzPgAAAAAAAAAA2vg7vtALiD/q292+eukhvyAWyL6sEpS+AAAAAAAAAAAzCcg86S5/vMSlxD0F8d87CKqdvZ0dh74AAIA/AACAPzOOkDzDNXK6Xb8qNURYPDCjbDY7xX5WtAAAgD8AAIA/mhESPc/cFLxbCLW9J1WiPErdbz1oaoa9AACAPwAAgD/gJoc+/04fP8DO9bwAiEO/36D3PiUVT74AAAAAAAAAADMxaDx7tpu6UlaNtJ7SErDTAp25CpeCMwAAgD8AAIA/ZsIhPnzpSz67ctq+Z/4hv62CDzu245K+AAAAAAAAAAAaNHg+yTWQP7OGtj4tcSK/r6AFP9a5cj4AAAAAAAAAAI1eCz5IaNE9NSrqvrxlz762yLK9AoJrvgAAAAAAAAAAmjFGPPZcbboAZzwzww+qr6luC7nKKcqzAACAPwAAgD+aCYi8w89ovJbA6ztsR7E8gRvRPRZLjr0AAIA/AACAPzNdsrx7XpO6SLbrupUe5LVEilO54WIIOgAAgD8AAIA/hhxMvghD0j4TMdk+zvw+v2Ic/r0FlYg+AAAAAAAAAAAAIDS7pPkIuyryK70BWsU8I34DPO6UqL0AAIA/AACAPyYmzz0ojA4/rentvWEkUL8bGi8+2iYMvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,29 +41,59 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.004885333333333408,
 
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZY9QMyRSc0CUhpRSlIwBbJRLq4wBdJRHQMMh4kWZZ0V1fZQoaAZoCWgPQwgi/mFLD8RxQJSGlFKUaBVLrmgWR0DDIe19roGIdX2UKGgGaAloD0MIJJwWvOgXcUCUhpRSlGgVS6doFkdAwyH71nuiOHV9lChoBmgJaA9DCFjmrbpOi3NAlIaUUpRoFUu8aBZHQMMiBFTm4iJ1fZQoaAZoCWgPQwgbu0T11ilzQJSGlFKUaBVLwGgWR0DDIgPyiEg4dX2UKGgGaAloD0MIH6FmSBVtckCUhpRSlGgVS7NoFkdAwyIGophF3XV9lChoBmgJaA9DCHjuPVwyW3JAlIaUUpRoFUu4aBZHQMMiClQEZBN1fZQoaAZoCWgPQwiZucDlMfxyQJSGlFKUaBVLu2gWR0DDIg1Ey+HrdX2UKGgGaAloD0MItCCU9/Fxc0CUhpRSlGgVS7VoFkdAwyIZwb2lEnV9lChoBmgJaA9DCPjFpSot53NAlIaUUpRoFU2gAWgWR0DDIhur2g3+dX2UKGgGaAloD0MI71aW6Oz/cUCUhpRSlGgVS5doFkdAwyx13VTaTXV9lChoBmgJaA9DCOyGbYuyb3FAlIaUUpRoFUugaBZHQMMskA5zYEp1fZQoaAZoCWgPQwjDYtS19hx0QJSGlFKUaBVLtWgWR0DDLJSlN1yOdX2UKGgGaAloD0MIfT81Xjo1dECUhpRSlGgVS9doFkdAwyyo1SflIXV9lChoBmgJaA9DCKgBg6QPO3NAlIaUUpRoFUu/aBZHQMMsq5mZmZp1fZQoaAZoCWgPQwhcy2Q4HmVyQJSGlFKUaBVLxGgWR0DDLKqisXBQdX2UKGgGaAloD0MIQBU3bjGNckCUhpRSlGgVS5JoFkdAwyzcLsrupnV9lChoBmgJaA9DCBhcc0f/SHJAlIaUUpRoFUu9aBZHQMMs3G5lOGl1fZQoaAZoCWgPQwiBk23gTmtxQJSGlFKUaBVLnWgWR0DDLOBl4C6pdX2UKGgGaAloD0MI9tIUAc65cUCUhpRSlGgVS7xoFkdAwyzl7el9B3V9lChoBmgJaA9DCILK+PfZxnFAlIaUUpRoFUuYaBZHQMMs8cX3xnZ1fZQoaAZoCWgPQwgC9Pv+DWNyQJSGlFKUaBVLq2gWR0DDLPTLOiWWdX2UKGgGaAloD0MIH7+36U8PdECUhpRSlGgVS7RoFkdAwyz2Jyhi9nV9lChoBmgJaA9DCHbj3ZExyHNAlIaUUpRoFUvGaBZHQMMs+0+LWI51fZQoaAZoCWgPQwhX6lkQCoxzQJSGlFKUaBVLwWgWR0DDLP2Ur08OdX2UKGgGaAloD0MICJPi4xPwcUCUhpRSlGgVS4RoFkdAwyz/ovi97HV9lChoBmgJaA9DCCyAKQNHZ3NAlIaUUpRoFUvCaBZHQMMtEkdmxt51fZQoaAZoCWgPQwgGnnsP1x1yQJSGlFKUaBVL1WgWR0DDLSL6DXe4dX2UKGgGaAloD0MIz7wcdh+ZcUCUhpRSlGgVS65oFkdAwy041VHWjHV9lChoBmgJaA9DCChDVUwlv3FAlIaUUpRoFUu0aBZHQMMtPEcsDnx1fZQoaAZoCWgPQwind/F+XFVxQJSGlFKUaBVLxGgWR0DDLUzC+De1dX2UKGgGaAloD0MIwCDp02qfckCUhpRSlGgVS41oFkdAwy1OcCo0h3V9lChoBmgJaA9DCI5XIHpSjEFAlIaUUpRoFUtmaBZHQMMtUY6fapR1fZQoaAZoCWgPQwiXVkPiHt9yQJSGlFKUaBVL52gWR0DDLVOIhyKfdX2UKGgGaAloD0MIXOSerq7VcUCUhpRSlGgVS5JoFkdAwy1pfLLZBnV9lChoBmgJaA9DCFqg3SHFO3NAlIaUUpRoFUuwaBZHQMMtbjmCAc11fZQoaAZoCWgPQwgaGk8EcfdvQJSGlFKUaBVLn2gWR0DDLXSdFvycdX2UKGgGaAloD0MIBd80fbbvcECUhpRSlGgVS69oFkdAwy1zriVB2XV9lChoBmgJaA9DCJeQD3o2M3JAlIaUUpRoFUu1aBZHQMMtgpfhMrV1fZQoaAZoCWgPQwiV1Alo4jV0QJSGlFKUaBVL3GgWR0DDLY6tNi6QdX2UKGgGaAloD0MILSRgdHlwckCUhpRSlGgVS7toFkdAwy2Ru8brC3V9lChoBmgJaA9DCEHWU6vvo3FAlIaUUpRoFUu2aBZHQMMtkFq8Djl1fZQoaAZoCWgPQwgxthDkIDByQJSGlFKUaBVLmGgWR0DDLaEEzO5bdX2UKGgGaAloD0MIrRiuDoBGSkCUhpRSlGgVS3NoFkdAwy2xytmthnV9lChoBmgJaA9DCAg8MIDw5HJAlIaUUpRoFUvGaBZHQMMttZnUUfx1fZQoaAZoCWgPQwj0UNuGUe5wQJSGlFKUaBVLoWgWR0DDLcDnaFmGdX2UKGgGaAloD0MIYcWp1sKUcECUhpRSlGgVS6doFkdAwy3CicG1QnV9lChoBmgJaA9DCOvE5XjFH3JAlIaUUpRoFUuVaBZHQMMtx/gaWHF1fZQoaAZoCWgPQwg2BTI7CxRxQJSGlFKUaBVLrGgWR0DDLd6zZ6D5dX2UKGgGaAloD0MI3q8CfDejc0CUhpRSlGgVS7hoFkdAwy3kHFglW3V9lChoBmgJaA9DCG6/fLLimnNAlIaUUpRoFUu8aBZHQMMuDbMHKOl1fZQoaAZoCWgPQwjb3JieMDVyQJSGlFKUaBVLu2gWR0DDLhHdXT3JdX2UKGgGaAloD0MIiWGHMWnDc0CUhpRSlGgVS8BoFkdAwy4XHe7+UHV9lChoBmgJaA9DCMXjolrEcnJAlIaUUpRoFUuzaBZHQMMuG6X0Gu91fZQoaAZoCWgPQwjaU3JO7BVyQJSGlFKUaBVLp2gWR0DDLh94qwyJdX2UKGgGaAloD0MI1EZ1OhBLckCUhpRSlGgVS5VoFkdAwy4hk078vXV9lChoBmgJaA9DCMy209YIfXJAlIaUUpRoFUuvaBZHQMMuJMZ5zHV1fZQoaAZoCWgPQwgcCwqD8odxQJSGlFKUaBVLh2gWR0DDLiqpzcREdX2UKGgGaAloD0MIokRLHg9nckCUhpRSlGgVS4doFkdAwy42s4ku6HV9lChoBmgJaA9DCJ7RViXRTHRAlIaUUpRoFUvBaBZHQMMuN1hb4ah1fZQoaAZoCWgPQwjhmjv63+pyQJSGlFKUaBVLmmgWR0DDLjcKG+K1dX2UKGgGaAloD0MIUDi7tUw9dECUhpRSlGgVTQUBaBZHQMMuSBF/hEV1fZQoaAZoCWgPQwj1K50PDzhyQJSGlFKUaBVLpmgWR0DDLlcIPbwjdX2UKGgGaAloD0MIyVUsftOpc0CUhpRSlGgVS7VoFkdAwy5di1Aqu3V9lChoBmgJaA9DCECKOnNPW3FAlIaUUpRoFUusaBZHQMMuc5vDP4V1fZQoaAZoCWgPQwh4YADhA7hxQJSGlFKUaBVLsmgWR0DDLn4mZ3LWdX2UKGgGaAloD0MIv0aSINxcc0CUhpRSlGgVS6BoFkdAwy6VyhBZ6nV9lChoBmgJaA9DCNRfr7AgwnBAlIaUUpRoFUuraBZHQMMuqFAE+xJ1fZQoaAZoCWgPQwi/f/PihAByQJSGlFKUaBVLo2gWR0DDLq0RUWEcdX2UKGgGaAloD0MI3q8CfLegc0CUhpRSlGgVS8FoFkdAwy64VO9FnnV9lChoBmgJaA9DCKCM8WG2i3NAlIaUUpRoFUuyaBZHQMMuuVQZXMh1fZQoaAZoCWgPQwgKoYMuIVVyQJSGlFKUaBVLtGgWR0DDLsWPzWf9dX2UKGgGaAloD0MIXAUx0PUtckCUhpRSlGgVS79oFkdAwy7JLuhK2HV9lChoBmgJaA9DCDW4rS28MXRAlIaUUpRoFUuuaBZHQMMuzPz4DcN1fZQoaAZoCWgPQwj8x0J0iOZxQJSGlFKUaBVL3WgWR0DDLtmpAD7qdX2UKGgGaAloD0MIVMN+T2zbckCUhpRSlGgVS61oFkdAwy7ddAPd23V9lChoBmgJaA9DCHGsi9to6HNAlIaUUpRoFUvQaBZHQMMu6XMQmNR1fZQoaAZoCWgPQwhlUkMbACBzQJSGlFKUaBVL2GgWR0DDLu+Ef1YhdX2UKGgGaAloD0MIB5rPuVtIcUCUhpRSlGgVS7BoFkdAwy7vedCmdnV9lChoBmgJaA9DCLvSMlJvWnRAlIaUUpRoFUuuaBZHQMMu9QM6RyR1fZQoaAZoCWgPQwigbqDAezhxQJSGlFKUaBVLqWgWR0DDLwTwc5sCdX2UKGgGaAloD0MIZysv+R+5c0CUhpRSlGgVS8VoFkdAwy8mZ4wAVHV9lChoBmgJaA9DCJOmQdF8BnFAlIaUUpRoFUuraBZHQMMvJ5pi7TV1fZQoaAZoCWgPQwghWcAE7lBzQJSGlFKUaBVLomgWR0DDLzIkZ75VdX2UKGgGaAloD0MIngyOkpfCcECUhpRSlGgVS51oFkdAwy88ONHYpXV9lChoBmgJaA9DCL9FJ0stjXFAlIaUUpRoFUuraBZHQMMvSR95Qgt1fZQoaAZoCWgPQwjDf7qBAgNvQJSGlFKUaBVLpGgWR0DDL0+VJL/TdX2UKGgGaAloD0MIW+z2WeXtckCUhpRSlGgVS8JoFkdAwy9RoysS03V9lChoBmgJaA9DCBxhURHnd3NAlIaUUpRoFUunaBZHQMMvVZuIhyN1fZQoaAZoCWgPQwiWmGclLXlxQJSGlFKUaBVLpWgWR0DDL2aDIzWPdX2UKGgGaAloD0MIcm4T7hUbc0CUhpRSlGgVS6toFkdAwy9nybx3FHV9lChoBmgJaA9DCFFqL6Jt7nNAlIaUUpRoFUvDaBZHQMMvbnZ00WN1fZQoaAZoCWgPQwgRUrezLzdyQJSGlFKUaBVLpGgWR0DDL3FB8hLXdX2UKGgGaAloD0MIz4WRXpRzc0CUhpRSlGgVS6JoFkdAwy91N1QqJHV9lChoBmgJaA9DCOWzPA9uFnNAlIaUUpRoFUusaBZHQMMvfUwaisZ1fZQoaAZoCWgPQwi77q1IzBlwQJSGlFKUaBVLqGgWR0DDL41JcxCZdX2UKGgGaAloD0MIc2cmGE51cUCUhpRSlGgVS8JoFkdAwy+SBJ7LMnV9lChoBmgJaA9DCFyPwvVoKnNAlIaUUpRoFUuaaBZHQMMvossH0K91fZQoaAZoCWgPQwjfwyXHXb5wQJSGlFKUaBVLnWgWR0DDL69YyO7ydX2UKGgGaAloD0MI9WVppyZtcUCUhpRSlGgVS7JoFkdAwy+1HbRF7XVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 3070,
79
- "n_steps": 1024,
80
- "gamma": 0.999,
81
- "gae_lambda": 0.98,
82
- "ent_coef": 0.01,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
  "n_epochs": 10,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
93
- "target_kl": null
 
 
 
 
94
  }
 
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b5bdd651360>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b5bdd6513f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b5bdd651480>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b5bdd651510>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b5bdd6515a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b5bdd651630>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b5bdd6516c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b5bdd651750>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b5bdd6517e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b5bdd651870>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b5bdd651900>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b5bdd651990>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b5bdd602a80>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1727359800800926978,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
 
 
 
 
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACBhRD6nM18/6nZGPuMtF7+xlqQ+JQ8vvgAAAAAAAAAAmr9kPFQWrj8kqKs+Hcgav+fPhLvBpSE9AAAAAAAAAAAzI9y74ZqVurgC9LMAH7mv3EwYO1bnvjMAAIA/AACAP8BJKr6hjYu80tmJOluUzTh5//k9Fhy8uQAAgD8AAIA/WnjKvdYbHz0kvy0+16afvpUXQT0l+5a8AAAAAAAAAAA6uBQ+DLlqPgKCbr4M/C++c4uPvQ7rAz0AAAAAAAAAAE0aqL0UJoe6MNK9PD1Z4TUD2BY7Q8HdNAAAAAAAAAAAJm7JPdd4P7tz8HG93+2EPKuDgjxoZGW9AAAAAAAAgD/N/LQ9wj16P+tX3z1WuOi+rVLPPcKS/zwAAAAAAAAAAK1TKr4DxWa8hDfLu2LJNbqWIsc9jaETOwAAgD8AAIA/pgyBPqeblD+z15E+8dL/vvHdcT5BFjm9AAAAAAAAAADtExI+1+EzuwJPuL11Gyy+4xUbPCIs+zwAAAAAAACAP2YSHb2gV8A/nnGqvsN1cz41vom7DLeNvQAAAAAAAAAAwIYdPlywZLwAKGw7xy1iufj4wr1aUom6AACAPwAAgD8GVgw+hSDfu4PdgTyjjAS7M5dFvUNh3bsAAIA/AACAP437Sr4xpC0/RY23vRLt1L4LPxa+EI3tPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/mKtHQQcyMAWyUS++MAXSUR0CaFE3XI2fkdX2UKGgGR0BxD0L2HtWuaAdNLQFoCEdAmhX72pQ1rXV9lChoBkdAbz1NUOuq3mgHTQABaAhHQJoYDA57w8Z1fZQoaAZHQHB1GkrPMStoB00CAWgIR0CaGDMJhOQAdX2UKGgGR0BscU4xUNrkaAdL52gIR0CaGjFkhA4XdX2UKGgGR0Bw5M9TxXnyaAdL6WgIR0CaGqS75Ec9dX2UKGgGR0Bxx8x59mYjaAdNJAFoCEdAmhx2xUvPC3V9lChoBkdAcBzJDE3sHGgHS+xoCEdAmhzNfG+9J3V9lChoBkdAcXZ4lyBClmgHS+JoCEdAmh0IF/x2CHV9lChoBkdAcU2ycTakAWgHS9poCEdAmh1U8Rtgr3V9lChoBkdAcIBnTRYzSGgHTQQBaAhHQJodrqW1MM91fZQoaAZHQHBjJs0pEx9oB0v/aAhHQJoeQ7T2FnJ1fZQoaAZHQGzsKrilzltoB0v2aAhHQJofp97Wuox1fZQoaAZHQG/3/p+tr9FoB0vWaAhHQJogFkjHGS91fZQoaAZHQHDT9HUc4o9oB0viaAhHQJoglO58Sf11fZQoaAZHQGYAOeJ53TxoB03oA2gIR0CaImG8274BdX2UKGgGR0Burs2R7qptaAdL72gIR0CaIpIHkcS5dX2UKGgGR0Bx+y03Ov+waAdL3WgIR0CaJIXkYGdJdX2UKGgGR0Bih//m1YyPaAdN6ANoCEdAmiSRZha1TnV9lChoBkdAcFo1loUSI2gHS9toCEdAmiT49X9zfnV9lChoBkdAcbN+mm+Cb2gHS/9oCEdAmiVgUQCjlHV9lChoBkdAcOEW912aD2gHS/JoCEdAmiV0RJ2+wnV9lChoBkdAcWBjENvwVmgHS/JoCEdAmiYRSk0rLHV9lChoBkdAcBPbpNbkfmgHS/xoCEdAmibyIgvDg3V9lChoBkdAcVt6qbSZ0GgHS+BoCEdAmidVzQu27XV9lChoBkdAcpOy+Yc/+2gHTQABaAhHQJoo1mbsniN1fZQoaAZHQHBLkDlo11poB0vraAhHQJoqhv5xiod1fZQoaAZHQHIiJVOsT39oB0v7aAhHQJorU1XNke91fZQoaAZHQHAvyyyD7IloB0vlaAhHQJosqvaDf3x1fZQoaAZHQHDOH1rZampoB0vqaAhHQJos0zsQd0d1fZQoaAZHQHKUj9CNS61oB0vYaAhHQJotLqeK8+R1fZQoaAZHQG/xVc+qzZ9oB0viaAhHQJotgCcPOIJ1fZQoaAZHQHH8IF3Y+StoB0vvaAhHQJou1RwZOzp1fZQoaAZHQHG/lzZHuqpoB00PAWgIR0CaLtZ/Tb35dX2UKGgGR0BxhdGd7OVxaAdL3WgIR0CaLykuYhMbdX2UKGgGR0Bj+bBMzuWsaAdN6ANoCEdAmi9HjIaLoHV9lChoBkdAZWB+KjzqbGgHTegDaAhHQJovaAy2x6h1fZQoaAZHQHGQStRvWH1oB0vuaAhHQJowFXo1UER1fZQoaAZHQHFQWcjJMg5oB0v6aAhHQJox5UKiPAB1fZQoaAZHQHELoHC4z8BoB0vWaAhHQJoyRTyauwJ1fZQoaAZHQHBpd0eU6gdoB0vdaAhHQJozMiSq2jR1fZQoaAZHQEqlafzz3AVoB0vDaAhHQJoz4j3VTaV1fZQoaAZHQHKWfu9eyAxoB03vAmgIR0CaNQPEbYK6dX2UKGgGR0BuIWUD+zdDaAdL5GgIR0CaNU6QNkOJdX2UKGgGR0Bw10kAxSHeaAdNAQFoCEdAmjWU1ZTya3V9lChoBkdAcSlJzT4L1GgHTQgBaAhHQJo1634Kx9p1fZQoaAZHQHD+BybQTmJoB0vZaAhHQJo2A08/2TR1fZQoaAZHQHB+97OVxCJoB0vTaAhHQJo2GzLOiWV1fZQoaAZHQGIWSrYGt6poB03oA2gIR0CaNrYwZflZdX2UKGgGR0Bta3EdeY2LaAdL6mgIR0CaNuHavicYdX2UKGgGR0BtvZVlwtJ4aAdL72gIR0CaNxeD3/PxdX2UKGgGR0ByFI20iQkpaAdNFQFoCEdAmjegoLG7z3V9lChoBkdAcAyhzeXRgWgHS/1oCEdAmjf5JPIn0HV9lChoBkdAbaWXenAIp2gHS+ZoCEdAmjjP8hs673V9lChoBkdAcIYmRNh3JWgHTQgBaAhHQJo6Ieii7Cl1fZQoaAZHQHJpve1rqMZoB0viaAhHQJo6ekBS1md1fZQoaAZHQHKKd8Aq/dtoB0vpaAhHQJo74soUi6h1fZQoaAZHQHLuOcc2itdoB0vVaAhHQJo781n/T9d1fZQoaAZHQG9MnGbTc7BoB0v2aAhHQJo8A3XI2fl1fZQoaAZHQHA/V7laKUFoB0v2aAhHQJo8hpWV/tp1fZQoaAZHQG9EmKQ7tAtoB0vbaAhHQJo9PZ+QU6B1fZQoaAZHQG2bs052hZhoB0vnaAhHQJo9WGIsRQJ1fZQoaAZHQHKA9WluWKNoB00UAWgIR0CaPeHI6r/9dX2UKGgGR0BxZULE1l5GaAdNAQFoCEdAmj3pMHryD3V9lChoBkdAb1E7YkE9uGgHTR8BaAhHQJo+BLbpNbl1fZQoaAZHQHDDtVR1oxpoB0v1aAhHQJo+/AqNIbx1fZQoaAZHQHJ0VIZqEe1oB00dAWgIR0CaP7Q+EAYIdX2UKGgGR0ByZvhJiAlOaAdL42gIR0CaQK6wMYuTdX2UKGgGR0BdQnwob4rSaAdN6ANoCEdAmkDpC4SYgXV9lChoBkdAbVgdSVGCqmgHS+ZoCEdAmkEU7OmixnV9lChoBkdAcCB9L6DXe2gHS9doCEdAmkIF98Z1m3V9lChoBkdAbkUPU8V58mgHS/FoCEdAmkNgpz90inV9lChoBkdAcNquPmxMWWgHS+ZoCEdAmkOlJtix3XV9lChoBkdAceE8sMAmzGgHS/loCEdAmkOlr2xptnV9lChoBkdAb0nzshPj42gHS9hoCEdAmkT4f0VafXV9lChoBkdAcQzFnZkCm2gHS/BoCEdAmkUOpCKJmHV9lChoBkdAcDdd4FA3UGgHS9VoCEdAmkUPustCiXV9lChoBkdAbTAAxSHdoGgHS/hoCEdAmkV6dlNDdHV9lChoBkdAcn2KB/Zuh2gHS+poCEdAmkWvpljEvXV9lChoBkdAcDhxn3+MqGgHS+hoCEdAmkb8bm2b5XV9lChoBkdAbfUq1gH/tWgHS+xoCEdAmkgqt9x6wHV9lChoBkdAbmzCVrylN2gHS+toCEdAmkok03wTd3V9lChoBkdAcLe1hb4agmgHS/1oCEdAmkqmuDBdlnV9lChoBkdAcoLtQsPJ72gHS+xoCEdAmkudXo1UEXV9lChoBkdAcKyk5ZKWcGgHS9loCEdAmkwUtI0653V9lChoBkdAcZ4Rw6ySm2gHS9NoCEdAmk2ClN1yNnV9lChoBkdAcRq8yN4qw2gHS/RoCEdAmk2EF8ohIXV9lChoBkdAbwrTodMj/2gHS9VoCEdAmk2urIYFaHV9lChoBkdAceKOARTS9mgHS91oCEdAmk5+ANG3F3V9lChoBkdAcUybF0gbImgHS+JoCEdAmk7Ngnc+JXV9lChoBkdAcaMBPKuB+WgHTRkBaAhHQJpO5IlMRHx1fZQoaAZHQHEDShFmWdFoB0v4aAhHQJpO8GD+R5l1fZQoaAZHQHCCwlWwNb1oB0vtaAhHQJpQLlyR0U51fZQoaAZHQG5+eHaews5oB0vbaAhHQJpQhGb1AZ91fZQoaAZHQHGPAjD8+A5oB0vcaAhHQJpTAjv/io91fZQoaAZHQHGLNgF5fMRoB00KAWgIR0CaU9QNCqp+dX2UKGgGR0ByEYVymygPaAdNGgFoCEdAmlP2kep4r3V9lChoBkdAZqP1BdD6WWgHTegDaAhHQJpUKz7di2F1fZQoaAZHQHAP6RdQfp5oB0vyaAhHQJpVTOkcjqx1fZQoaAZHQHGJzOHFglZoB0vmaAhHQJpVhuFYdQx1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 380,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
  "n_epochs": 10,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1789b66a792a07e22fb5ba12c8088c64449647e877ff7754449a0d5fe38054cc
3
- size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cb748a4b69e13d304423d42df91e89e9131e868724f3f35c2f580c3cf503e0f
3
+ size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b0f4e02a45a07bb79a4555cf4aab6c62942874a53e051bd0d23f5e91f75732fe
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fe57371ab5ed92c34be033887d15d61c0f3997863fb0f99274fade826f2e3dc
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
- size 431
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,9 @@
1
- OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
- Python: 3.7.13
3
- Stable-Baselines3: 1.5.0
4
- PyTorch: 1.11.0+cu113
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.4.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:44d1b4844e5f0de05e6adc06d5583292c8864ca765e7bf3fcd7a82ddfd456009
3
- size 217020
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08e3a8ff1c3049aa3820f7a6a302149cc26e305e645847204631dc8ad95f5e6e
3
+ size 181816
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": -59.52229243734437, "std_reward": 15.058441316149224, "n_evaluation_episodes": 10, "eval_datetime": "2024-09-26T13:47:02.672185"}
 
1
+ {"mean_reward": 261.1783544, "std_reward": 34.98125102641349, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-09-26T14:56:23.987243"}