pvduy commited on
Commit
167fa29
1 Parent(s): 6c11314

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -167
README.md CHANGED
@@ -1,199 +1,123 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
 
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
87
 
88
- #### Preprocessing [optional]
 
 
 
 
 
89
 
90
- [More Information Needed]
 
 
 
 
 
91
 
 
 
 
 
 
 
92
 
93
- #### Training Hyperparameters
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
 
 
 
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
 
 
 
 
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
194
 
195
- [More Information Needed]
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ datasets:
3
+ - HuggingFaceH4/ultrachat_200k
4
+ - allenai/ultrafeedback_binarized_cleaned
5
+ - meta-math/MetaMathQA
6
+ - WizardLM/WizardLM_evol_instruct_V2_196k
7
+ - openchat/openchat_sharegpt4_dataset
8
+ - LDJnr/Capybara
9
+ - Intel/orca_dpo_pairs
10
+ - hkust-nlp/deita-10k-v0
11
+ language:
12
+ - en
13
+ tags:
14
+ - causal-lm
15
+ extra_gated_fields:
16
+ Name: text
17
+ Email: text
18
+ Country: text
19
+ Organization or Affiliation: text
20
+ I ALLOW Stability AI to email me about new model releases: checkbox
21
+ license: other
22
  ---
23
+ # `StableLM 2 Chat`
24
 
25
+ ## Model Description
26
 
27
+ `Stable LM 2 Chat` is a 12 billion parameter instruction tuned language model inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline. The model is trained on a mix of publicly available datasets and synthetic datasets, utilizing [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290).
28
 
29
+ ## Usage
30
 
31
+ `StableLM 2 Zephyr 1.6B` uses the following instruction format:
32
+ ```
33
+ <|user|>
34
+ Which famous math number begins with 1.6 ...?<|endoftext|>
35
+ <|assistant|>
36
+ The number you are referring to is 1.618033988749895. This is the famous value known as the golden ratio<|endoftext|>
37
+ ```
38
 
39
+ This format is also available through the tokenizer's `apply_chat_template` method:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
+ ```python
42
+ from transformers import AutoModelForCausalLM, AutoTokenizer
43
 
44
+ tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-chat', trust_remote_code=True)
45
+ model = AutoModelForCausalLM.from_pretrained(
46
+ 'stabilityai/stablelm-2-chat',
47
+ device_map="auto",
48
+ trust_remote_code=True,
49
+ )
50
 
51
+ prompt = [{'role': 'user', 'content': 'How to achieve multiple rows of data into one row of data in Excel?'}]
52
+ inputs = tokenizer.apply_chat_template(
53
+ prompt,
54
+ add_generation_prompt=True,
55
+ return_tensors='pt'
56
+ )
57
 
58
+ tokens = model.generate(
59
+ inputs.to(model.device),
60
+ max_new_tokens=1024,
61
+ temperature=0.5,
62
+ do_sample=True
63
+ )
64
 
65
+ print(tokenizer.decode(tokens[0], skip_special_tokens=False))
66
+ ```
67
 
68
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
+ * **Developed by**: [Stability AI](https://stability.ai/)
71
+ * **Model type**: `StableLM 2 Chat` model is an auto-regressive language model based on the transformer decoder architecture.
72
+ * **Language(s)**: English
73
+ * **Paper**: [Stable LM 2 Chat Technical Report](https://drive.google.com/file/d/1JYJHszhS8EFChTbNAf8xmqhKjogWRrQF/view?usp=sharing)
74
+ * **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
75
+ * **Finetuned from model**: [https://huggingface.co/stabilityai/stablelm-2-1_6b](https://huggingface.co/stabilityai/stablelm-2-1_6b)
76
+ * **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b/blob/main/LICENSE). If you want to use this model for your commercial products or purposes, please contact us [here](https://stability.ai/contact) to learn more.
77
+ * **Contact**: For questions and comments about the model, please email `lm@stability.ai`
78
 
79
+ ### Training Dataset
80
 
81
+ The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets):
82
+ 1. SFT Datasets
83
+ - HuggingFaceH4/ultrachat_200k
84
+ - meta-math/MetaMathQA
85
+ - WizardLM/WizardLM_evol_instruct_V2_196k
86
+ - Open-Orca/SlimOrca
87
+ - openchat/openchat_sharegpt4_dataset
88
+ - LDJnr/Capybara
89
+ - hkust-nlp/deita-10k-v0
90
 
91
+ 2. Preference Datasets:
92
 
93
+ ## Performance
94
 
95
+ ### MT-Bench
96
 
 
97
 
 
98
 
99
+ ### OpenLLM Leaderboard
100
 
 
101
 
102
+ ### Training Infrastructure
103
 
104
+ * **Hardware**: `StableLM 2 Chat` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
105
+ * **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
106
 
107
+ ## Use and Limitations
108
 
109
+ ### Intended Use
110
 
111
+ The model is intended to be used in chat-like applications. Developers must evaluate the model for safety performance in their specific use case. Read more about [safety and limitations](#limitations-and-bias) below.
112
 
113
+ ### Limitations and Bias
114
+
115
+ This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.
116
 
117
+ Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it will hallucinate many facts. It is also willing to output potentially harmful outputs or misinformation when the user requests it.
118
+ Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful.
119
+ Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model.
120
+ Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.
121
 
 
122
 
123
+ ## How to Cite