|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" StableLM model configuration """ |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
STABLELM_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"stabilityai/stablelm-3b-4e1t": "https://huggingface.co/stabilityai/stablelm-3b-4e1t/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class StableLmConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`~StableLmModel`]. |
|
It is used to instantiate an StableLM model according to the specified arguments, defining the model |
|
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of |
|
the StableLM [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used |
|
to control the model outputs. Read the documentation from [`PretrainedConfig`] |
|
for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50304): |
|
Vocabulary size of the StableLM model. Defines the number of different tokens that |
|
can be represented by the `inputs_ids` passed when calling [`StableLmModel`]. |
|
intermediate_size (`int`, *optional*, defaults to 6912): |
|
Dimension of the MLP representations. |
|
hidden_size (`int`, *optional*, defaults to 2560): |
|
Dimension of the decoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer decoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 32): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to |
|
`num_attention_heads`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string). |
|
max_position_embeddings (`int`, *optional*, defaults to 4096): |
|
The maximum sequence length that this model might ever be used with. |
|
Typically set this to something large just in case (e.g., 512 or 1024 or 2048). |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing |
|
all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions |
|
(not used by all models). Only relevant if `config.is_decoder=True`. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. |
|
rope_theta (`float`, *optional*, defaults to `10000.0`): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling |
|
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is |
|
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update |
|
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how |
|
these scaling strategies behave: |
|
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This |
|
is an experimental feature, subject to breaking API changes in future versions. |
|
use_qkv_bias (`bool`, *optional*, defaults to `False`): |
|
Whether or not the model should use bias for qkv layers. |
|
hidden_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio after applying the MLP to the hidden states. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
partial_rotary_factor (`float`, *optional*, defaults to 0.25): |
|
Percentage of the query and keys which will have rotary embedding. |
|
bos_token_id (int, *optional*, defaults to 0): |
|
The id of the `BOS` token in the vocabulary. |
|
eos_token_id (int, *optional*, defaults to 0): |
|
The id of the `EOS` token in the vocabulary. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import StableLmModel, StableLmConfig |
|
|
|
>>> # Initializing a StableLM stablelm-3b style configuration |
|
>>> configuration = StableLmConfig() |
|
```""" |
|
|
|
model_type = "stablelm" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50304, |
|
intermediate_size=6912, |
|
hidden_size=2560, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=32, |
|
hidden_act="silu", |
|
max_position_embeddings=4096, |
|
initializer_range=0.02, |
|
layer_norm_eps=1.0e-5, |
|
use_cache=True, |
|
tie_word_embeddings=False, |
|
rope_theta=10_000, |
|
rope_scaling=None, |
|
use_qkv_bias=False, |
|
hidden_dropout=0.0, |
|
attention_dropout=0.0, |
|
partial_rotary_factor=0.25, |
|
bos_token_id=0, |
|
eos_token_id=0, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.use_qkv_bias = use_qkv_bias |
|
self.hidden_dropout = hidden_dropout |
|
self.attention_dropout = attention_dropout |
|
self.partial_rotary_factor = partial_rotary_factor |
|
self._rope_scaling_validation() |
|
|
|
super().__init__( |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
def _rope_scaling_validation(self): |
|
""" |
|
Validate the `rope_scaling` configuration. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: |
|
raise ValueError( |
|
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " |
|
f"got {self.rope_scaling}" |
|
) |
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
rope_scaling_factor = self.rope_scaling.get("factor", None) |
|
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: |
|
raise ValueError( |
|
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" |
|
) |
|
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: |
|
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") |
|
|