File size: 10,979 Bytes
94c4ce7
8138c65
 
 
 
 
94c4ce7
 
8613316
94c4ce7
 
8613316
 
94c4ce7
8820aad
94c4ce7
 
 
 
 
 
8138c65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94c4ce7
8613316
94c4ce7
 
 
4ef7135
94c4ce7
 
 
8613316
94c4ce7
 
67dc96c
94c4ce7
67dc96c
94c4ce7
 
 
 
 
 
 
c89d7d1
94c4ce7
10522cd
94c4ce7
 
 
67dc96c
94c4ce7
 
 
 
 
 
 
 
 
67dc96c
94c4ce7
 
 
 
 
 
 
 
 
986ce91
94c4ce7
e4652cb
94c4ce7
28b4cfb
986ce91
94c4ce7
 
 
 
 
 
 
 
 
 
10522cd
 
8820aad
10522cd
94c4ce7
6f2d2f8
94c4ce7
 
 
 
10522cd
f2e1a8b
4a14de9
f2e1a8b
10522cd
 
 
 
 
354cffb
10522cd
 
 
 
 
 
 
 
 
 
 
 
4bdc987
10522cd
 
 
 
 
 
 
 
 
94c4ce7
 
 
10522cd
94c4ce7
 
 
 
 
 
74da6f5
94c4ce7
 
 
 
 
c5108ad
 
 
 
430cf0d
 
 
 
 
 
 
 
 
 
8138c65
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
---
language:
- en
license: other
tags:
- causal-lm
datasets:
- HuggingFaceH4/ultrachat_200k
- allenai/ultrafeedback_binarized_cleaned
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- openchat/openchat_sharegpt4_dataset
- LDJnr/Capybara
- Intel/orca_dpo_pairs
- hkust-nlp/deita-10k-v0
extra_gated_fields:
  Name: text
  Email: text
  Country: text
  Organization or Affiliation: text
  I ALLOW Stability AI to email me about new model releases: checkbox
model-index:
- name: stablelm-2-zephyr-1_6b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 32.79
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=stabilityai/stablelm-2-zephyr-1_6b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 6.71
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=stabilityai/stablelm-2-zephyr-1_6b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 2.11
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=stabilityai/stablelm-2-zephyr-1_6b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 0.0
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=stabilityai/stablelm-2-zephyr-1_6b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 5.99
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=stabilityai/stablelm-2-zephyr-1_6b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 7.93
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=stabilityai/stablelm-2-zephyr-1_6b
      name: Open LLM Leaderboard
---
# `StableLM 2 Zephyr 1.6B`

## Model Description

`Stable LM 2 Zephyr 1.6B` is a 1.6 billion parameter instruction tuned language model inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline. The model is trained on a mix of publicly available datasets and synthetic datasets, utilizing [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290).

## Usage

`StableLM 2 Zephyr 1.6B` uses the following instruction format:
```
<|user|>
Which famous math number begins with 1.6 ...?<|endoftext|>
<|assistant|>
The number you are referring to is 1.618033988749895. This is the famous value known as the golden ratio<|endoftext|>
```

This format is also available through the tokenizer's `apply_chat_template` method:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-zephyr-1_6b')
model = AutoModelForCausalLM.from_pretrained(
    'stabilityai/stablelm-2-zephyr-1_6b',
    device_map="auto"
)

prompt = [{'role': 'user', 'content': 'Which famous math number begins with 1.6 ...?'}]
inputs = tokenizer.apply_chat_template(
    prompt,
    add_generation_prompt=True,
    return_tensors='pt'
)

tokens = model.generate(
    inputs.to(model.device),
    max_new_tokens=1024,
    temperature=0.5,
    do_sample=True
)

print(tokenizer.decode(tokens[0], skip_special_tokens=False))
```

## Model Details

* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: `StableLM 2 Zephyr 1.6B` model is an auto-regressive language model based on the transformer decoder architecture.
* **Language(s)**: English
* **Paper**: [Stable LM 2 1.6B Technical Report](https://drive.google.com/file/d/1JYJHszhS8EFChTbNAf8xmqhKjogWRrQF/view?usp=sharing)
* **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
* **Finetuned from model**: [https://huggingface.co/stabilityai/stablelm-2-1_6b](https://huggingface.co/stabilityai/stablelm-2-1_6b)
* **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b/blob/main/LICENSE). If you want to use this model for your commercial products or purposes, please contact us [here](https://stability.ai/contact) to learn more.
* **Contact**: For questions and comments about the model, please email `lm@stability.ai`

### Training Dataset

The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets):
1. SFT Datasets
- HuggingFaceH4/ultrachat_200k
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- Open-Orca/SlimOrca
- openchat/openchat_sharegpt4_dataset
- LDJnr/Capybara
- hkust-nlp/deita-10k-v0

2. Preference Datasets:
- allenai/ultrafeedback_binarized_cleaned
- Intel/orca_dpo_pairs

## Performance

### MT-Bench

<img src="https://cdn-uploads.huggingface.co/production/uploads/61b2bf4f5b1f7cad1799cfbb/QH00HVM3lg-5f17U_py4K.png" alt="mt_bench_plot" width="600"/>

| Model                   | Size | MT-Bench |
|-------------------------|------|----------|
| Mistral-7B-Instruct-v0.2| 7B   | 7.61     |
| Llama2-Chat             | 70B  | 6.86     |
| stablelm-zephyr-3b      | 3B   | 6.64     |
| MPT-30B-Chat            | 30B  | 6.39     |
| **stablelm-2-zephyr-1.6b**  | 1.6B | 5.42     |
| Falcon-40B-Instruct     | 40B  | 5.17     |
| Qwen-1.8B-Chat          | 1.8B | 4.95     |
| dolphin-2.6-phi-2       | 2.7B | 4.93     |
| phi-2                   | 2.7B | 4.29     |
| TinyLlama-1.1B-Chat-v1.0| 1.1B | 3.46     |

### OpenLLM Leaderboard

| Model                                  | Size | Average | ARC Challenge (acc_norm) | HellaSwag (acc_norm) | MMLU (acc_norm) | TruthfulQA (mc2) | Winogrande (acc) | Gsm8k (acc) |
|----------------------------------------|------|---------|-------------------------|----------------------|-----------------|------------------|------------------|-------------|
| microsoft/phi-2                        | 2.7B | 61.32%  | 61.09%                  | 75.11%               | 58.11%          | 44.47%           | 74.35%           | 54.81%      |
| **stabilityai/stablelm-2-zephyr-1_6b**     | 1.6B | 49.89%  | 43.69%                  | 69.34%               | 41.85%          | 45.21%           | 64.09%           | 35.18%      |
| microsoft/phi-1_5                      | 1.3B | 47.69%  | 52.90%                  | 63.79%               | 43.89%          | 40.89%           | 72.22%           | 12.43%      |
| stabilityai/stablelm-2-1_6b            | 1.6B | 45.54%  | 43.43%                  | 70.49%               | 38.93%          | 36.65%           | 65.90%           | 17.82%      |
| mosaicml/mpt-7b                        | 7B   | 44.28%  | 47.70%                  | 77.57%               | 30.80%          | 33.40%           | 72.14%           | 4.02%       |
| KnutJaegersberg/Qwen-1_8B-Llamaified*  | 1.8B | 44.75%  | 37.71%                  | 58.87%               | 46.37%          | 39.41%           | 61.72%           | 24.41%      |
| openlm-research/open_llama_3b_v2       | 3B   | 40.28%  | 40.27%                  | 71.60%               | 27.12%          | 34.78%           | 67.01%           | 0.91%       |
| iiuae/falcon-rw-1b                     | 1B   | 37.07%  | 35.07%                  | 63.56%               | 25.28%          | 35.96%           | 62.04%           | 0.53%       |
| TinyLlama/TinyLlama-1.1B-3T            | 1.1B | 36.40%  | 33.79%                  | 60.31%               | 26.04%          | 37.32%           | 59.51%           | 1.44%       |



### Training Infrastructure

* **Hardware**: `StableLM 2 Zephyr 1.6B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
* **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.

## Use and Limitations

### Intended Use

The model is intended to be used in chat-like applications. Developers must evaluate the model for safety performance in their specific use case. Read more about [safety and limitations](#limitations-and-bias) below.

### Limitations and Bias

This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.

Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it will hallucinate many facts. It is also willing to output potentially harmful outputs or misinformation when the user requests it.
Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful.
Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model.
Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.


## How to Cite

```bibtex
@misc{StableLM-2-1.6B,
      url={[https://huggingface.co/stabilityai/stablelm-2-1.6b](https://huggingface.co/stabilityai/stablelm-2-1.6b)},
      title={Stable LM 2 1.6B},
      author={Stability AI Language Team}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_stabilityai__stablelm-2-zephyr-1_6b)

|      Metric       |Value|
|-------------------|----:|
|Avg.               | 9.50|
|IFEval (0-Shot)    |32.79|
|BBH (3-Shot)       | 6.71|
|MATH Lvl 5 (4-Shot)| 2.11|
|GPQA (0-shot)      | 0.00|
|MuSR (0-shot)      | 5.99|
|MMLU-PRO (5-shot)  | 7.93|