ShareCaptioner / configuration_InternLM_XComposer.py
stanrom's picture
disable load_in_4bit=True
f862375 verified
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class InternLMXComposerConfig(PretrainedConfig):
model_type = "InternLMXComposer"
_auto_class = "AutoConfig"
def __init__(
self,
vocab_size=103168,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
hidden_act="silu",
max_position_embeddings=2048,
max_length=2048,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=-1,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
bias=True,
num_query_token=32,
num_quant=32,
intern_converted_llm=True,
kqvo_bias=True,
device='cuda',
internlm_lora=None,
# load_in_4bit=True,
**kwargs,
):
self.vocab_size = vocab_size
self.max_length = max_length
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.bias = bias
self.num_query_token = num_query_token
self.num_quant = num_quant
self.internlm_lora = internlm_lora
self.kqvo_bias = kqvo_bias
self.intern_converted_llm = intern_converted_llm
self.device = device
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)