stardust-coder commited on
Commit
a431732
1 Parent(s): c7378b5

End of training

Browse files
Files changed (4) hide show
  1. README.md +116 -0
  2. generation_config.json +6 -0
  3. model.safetensors +1 -1
  4. modeling_bit_llama.py +134 -0
README.md ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: myBit-Llama2-jp-127M-4
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # myBit-Llama2-jp-127M-4
13
+
14
+ This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 3.0920
17
+
18
+ ## Model description
19
+
20
+ More information needed
21
+
22
+ ## Intended uses & limitations
23
+
24
+ More information needed
25
+
26
+ ## Training and evaluation data
27
+
28
+ More information needed
29
+
30
+ ## Training procedure
31
+
32
+ ### Training hyperparameters
33
+
34
+ The following hyperparameters were used during training:
35
+ - learning_rate: 0.0024
36
+ - train_batch_size: 96
37
+ - eval_batch_size: 96
38
+ - seed: 42
39
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
40
+ - lr_scheduler_type: polynomial
41
+ - lr_scheduler_warmup_steps: 5000
42
+ - num_epochs: 1
43
+
44
+ ### Training results
45
+
46
+ | Training Loss | Epoch | Step | Validation Loss |
47
+ |:-------------:|:-----:|:------:|:---------------:|
48
+ | 4.6932 | 0.02 | 2000 | 3.3504 |
49
+ | 3.252 | 0.03 | 4000 | 3.1987 |
50
+ | 3.1379 | 0.05 | 6000 | 3.0873 |
51
+ | 3.0466 | 0.06 | 8000 | 3.0233 |
52
+ | 2.9925 | 0.08 | 10000 | 2.9819 |
53
+ | 2.9553 | 0.1 | 12000 | 2.9471 |
54
+ | 2.9292 | 0.11 | 14000 | 2.9278 |
55
+ | 2.9158 | 0.13 | 16000 | 2.9159 |
56
+ | 2.907 | 0.15 | 18000 | 2.9084 |
57
+ | 2.9018 | 0.16 | 20000 | 2.9015 |
58
+ | 2.8945 | 0.18 | 22000 | 2.8971 |
59
+ | 2.8901 | 0.19 | 24000 | 2.9014 |
60
+ | 2.8906 | 0.21 | 26000 | 2.8980 |
61
+ | 2.8943 | 0.23 | 28000 | 2.9010 |
62
+ | 2.8985 | 0.24 | 30000 | 2.9165 |
63
+ | 3.0191 | 0.26 | 32000 | 3.3484 |
64
+ | 3.5616 | 0.28 | 34000 | 3.4516 |
65
+ | 3.2849 | 0.29 | 36000 | 3.0454 |
66
+ | 3.2425 | 0.31 | 38000 | 3.7183 |
67
+ | 3.655 | 0.32 | 40000 | 3.8947 |
68
+ | 3.3151 | 0.34 | 42000 | 3.6150 |
69
+ | 3.3482 | 0.36 | 44000 | 3.1714 |
70
+ | 3.1433 | 0.37 | 46000 | 3.1073 |
71
+ | 3.0462 | 0.39 | 48000 | 2.9786 |
72
+ | 3.0889 | 0.41 | 50000 | 3.3002 |
73
+ | 3.4652 | 0.42 | 52000 | 3.3920 |
74
+ | 3.3726 | 0.44 | 54000 | 3.1293 |
75
+ | 3.2314 | 0.45 | 56000 | 3.3841 |
76
+ | 3.5303 | 0.47 | 58000 | 3.3865 |
77
+ | 3.2828 | 0.49 | 60000 | 3.2591 |
78
+ | 3.0219 | 0.5 | 62000 | 2.9431 |
79
+ | 3.0714 | 0.52 | 64000 | 3.2328 |
80
+ | 3.1354 | 0.54 | 66000 | 3.0794 |
81
+ | 3.2194 | 0.55 | 68000 | 3.1326 |
82
+ | 3.394 | 0.57 | 70000 | 3.5974 |
83
+ | 3.2692 | 0.58 | 72000 | 3.1522 |
84
+ | 3.1513 | 0.6 | 74000 | 3.1398 |
85
+ | 3.2473 | 0.62 | 76000 | 3.1921 |
86
+ | 3.1717 | 0.63 | 78000 | 3.1827 |
87
+ | 3.211 | 0.65 | 80000 | 3.0845 |
88
+ | 2.9955 | 0.67 | 82000 | 3.0229 |
89
+ | 3.3145 | 0.68 | 84000 | 3.3382 |
90
+ | 3.0703 | 0.7 | 86000 | 3.5395 |
91
+ | 3.234 | 0.71 | 88000 | 2.9486 |
92
+ | 3.1077 | 0.73 | 90000 | 2.9488 |
93
+ | 3.1097 | 0.75 | 92000 | 2.9597 |
94
+ | 2.8979 | 0.76 | 94000 | 3.0215 |
95
+ | 3.236 | 0.78 | 96000 | 3.1758 |
96
+ | 3.1365 | 0.8 | 98000 | 3.4841 |
97
+ | 3.1954 | 0.81 | 100000 | 2.9520 |
98
+ | 3.2054 | 0.83 | 102000 | 3.6384 |
99
+ | 3.2957 | 0.84 | 104000 | 2.9212 |
100
+ | 2.9358 | 0.86 | 106000 | 3.0166 |
101
+ | 3.221 | 0.88 | 108000 | 3.3753 |
102
+ | 3.2241 | 0.89 | 110000 | 3.0858 |
103
+ | 3.1497 | 0.91 | 112000 | 2.9252 |
104
+ | 3.198 | 0.93 | 114000 | 3.8514 |
105
+ | 3.1427 | 0.94 | 116000 | 4.1130 |
106
+ | 3.2371 | 0.96 | 118000 | 2.8639 |
107
+ | 3.2576 | 0.97 | 120000 | 2.9192 |
108
+ | 3.3229 | 0.99 | 122000 | 3.0920 |
109
+
110
+
111
+ ### Framework versions
112
+
113
+ - Transformers 4.38.2
114
+ - Pytorch 2.3.0+cu121
115
+ - Datasets 2.20.0
116
+ - Tokenizers 0.15.2
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.38.2"
6
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:788c820a2b381e8ff7123dbad9d370af4c617d6e6cb769dc7f2eefdf18a0acfd
3
  size 510960712
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0342f4324869091d5f08b1fdc85932b8dd0c4d690da3e0747329ddb83fc78d3c
3
  size 510960712
modeling_bit_llama.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ from typing import Optional, Tuple
3
+ from transformers.models.llama.modeling_llama import (
4
+ LlamaConfig,
5
+ LlamaModel,
6
+ LlamaForCausalLM,
7
+ LlamaAttention,
8
+ LlamaFlashAttention2,
9
+ LlamaSdpaAttention,
10
+ LlamaMLP,
11
+ LlamaDecoderLayer,
12
+ )
13
+ from mybitnet.bitnet import BitLinear
14
+ import torch
15
+ from torch import nn
16
+
17
+ class BitLlamaConfig(LlamaConfig):
18
+ model_type = "bit_llama"
19
+
20
+ def __init__(self, bits=8, **kwargs):
21
+ super().__init__(**kwargs)
22
+ self.bits = bits
23
+
24
+ class BitLlamaMLP(LlamaMLP):
25
+ def __init__(self, config):
26
+ super().__init__(config)
27
+ self.gate_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False, bits=config.bits, flg_before_linear=False)
28
+ self.up_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False, bits=config.bits, flg_before_linear=True)
29
+ self.down_proj = BitLinear(self.intermediate_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True)
30
+
31
+ class BitLlamaAttention(LlamaAttention):
32
+ def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
33
+ super().__init__(config)
34
+ self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
35
+ self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
36
+ self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
37
+ self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True)
38
+
39
+ class BitLlamaFlashAttention2(LlamaFlashAttention2):
40
+ def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
41
+ super().__init__(config, layer_idx)
42
+ self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
43
+ self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
44
+ self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
45
+ self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True)
46
+
47
+ class BitLlamaSdpaAttention(LlamaSdpaAttention):
48
+ def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
49
+ super().__init__(config, layer_idx)
50
+ self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
51
+ self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
52
+ self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
53
+ self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True)
54
+
55
+ BITLLAMA_ATTENTION_CLASSES = {
56
+ "eager": BitLlamaAttention,
57
+ "flash_attention_2": BitLlamaFlashAttention2,
58
+ "sdpa": BitLlamaSdpaAttention,
59
+ }
60
+
61
+ class BitLlamaDecoderLayer(LlamaDecoderLayer):
62
+ def __init__(self, config: BitLlamaConfig, layer_idx: int):
63
+ super().__init__(config, layer_idx)
64
+ self.self_attn = BITLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
65
+ self.mlp = BitLlamaMLP(config)
66
+ del self.input_layernorm
67
+ del self.post_attention_layernorm
68
+
69
+ def forward(
70
+ self,
71
+ hidden_states: torch.Tensor,
72
+ attention_mask: Optional[torch.Tensor] = None,
73
+ position_ids: Optional[torch.LongTensor] = None,
74
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
75
+ output_attentions: Optional[bool] = False,
76
+ use_cache: Optional[bool] = False,
77
+ cache_position: Optional[torch.LongTensor] = None,
78
+ **kwargs,
79
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
80
+ """
81
+ refers: https://github.com/huggingface/transformers/blob/c5f0288bc7d76f65996586f79f69fba8867a0e67/src/transformers/models/llama/modeling_llama.py#L693
82
+ """
83
+ if "padding_mask" in kwargs:
84
+ warnings.warn(
85
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
86
+ )
87
+
88
+ residual = hidden_states
89
+
90
+ # Self Attention
91
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
92
+ hidden_states=hidden_states,
93
+ attention_mask=attention_mask,
94
+ position_ids=position_ids,
95
+ past_key_value=past_key_value,
96
+ output_attentions=output_attentions,
97
+ use_cache=use_cache,
98
+ cache_position=cache_position,
99
+ **kwargs,
100
+ )
101
+ hidden_states = residual + hidden_states
102
+
103
+ # Fully Connected
104
+ residual = hidden_states
105
+ hidden_states = self.mlp(hidden_states)
106
+ hidden_states = residual + hidden_states
107
+
108
+ outputs = (hidden_states,)
109
+
110
+ if output_attentions:
111
+ outputs += (self_attn_weights,)
112
+
113
+ if use_cache:
114
+ outputs += (present_key_value,)
115
+
116
+ return outputs
117
+
118
+ class BitLlamaModel(LlamaModel):
119
+ config_class = BitLlamaConfig
120
+
121
+ def __init__(self, config: BitLlamaConfig):
122
+ super().__init__(config)
123
+ self.layers = nn.ModuleList(
124
+ [BitLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
125
+ )
126
+
127
+ class BitLlamaForCausalLM(LlamaForCausalLM):
128
+ config_class = BitLlamaConfig
129
+
130
+ def __init__(self, config: BitLlamaConfig):
131
+ super().__init__(config)
132
+ self.model = BitLlamaModel(config)
133
+ self.lm_head = BitLinear(config.hidden_size, config.vocab_size, bias=False, bits=config.bits, flg_before_linear=True)
134
+