File size: 25,453 Bytes
cdbbfa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
2023-10-19 03:02:32,455 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,456 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(31103, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=81, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-19 03:02:32,456 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,457 Corpus: 6900 train + 1576 dev + 1833 test sentences
2023-10-19 03:02:32,457 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,457 Train:  6900 sentences
2023-10-19 03:02:32,457         (train_with_dev=False, train_with_test=False)
2023-10-19 03:02:32,457 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,457 Training Params:
2023-10-19 03:02:32,457  - learning_rate: "3e-05" 
2023-10-19 03:02:32,457  - mini_batch_size: "16"
2023-10-19 03:02:32,457  - max_epochs: "10"
2023-10-19 03:02:32,457  - shuffle: "True"
2023-10-19 03:02:32,457 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,457 Plugins:
2023-10-19 03:02:32,457  - TensorboardLogger
2023-10-19 03:02:32,457  - LinearScheduler | warmup_fraction: '0.1'
2023-10-19 03:02:32,457 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,457 Final evaluation on model from best epoch (best-model.pt)
2023-10-19 03:02:32,458  - metric: "('micro avg', 'f1-score')"
2023-10-19 03:02:32,458 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,458 Computation:
2023-10-19 03:02:32,458  - compute on device: cuda:0
2023-10-19 03:02:32,458  - embedding storage: none
2023-10-19 03:02:32,458 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,458 Model training base path: "autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-5"
2023-10-19 03:02:32,458 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,458 ----------------------------------------------------------------------------------------------------
2023-10-19 03:02:32,458 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-19 03:02:45,358 epoch 1 - iter 43/432 - loss 4.68092903 - time (sec): 12.90 - samples/sec: 472.22 - lr: 0.000003 - momentum: 0.000000
2023-10-19 03:02:59,668 epoch 1 - iter 86/432 - loss 3.80733117 - time (sec): 27.21 - samples/sec: 458.56 - lr: 0.000006 - momentum: 0.000000
2023-10-19 03:03:13,521 epoch 1 - iter 129/432 - loss 3.15933165 - time (sec): 41.06 - samples/sec: 465.39 - lr: 0.000009 - momentum: 0.000000
2023-10-19 03:03:26,787 epoch 1 - iter 172/432 - loss 2.80639142 - time (sec): 54.33 - samples/sec: 460.04 - lr: 0.000012 - momentum: 0.000000
2023-10-19 03:03:40,465 epoch 1 - iter 215/432 - loss 2.50948460 - time (sec): 68.01 - samples/sec: 458.64 - lr: 0.000015 - momentum: 0.000000
2023-10-19 03:03:53,954 epoch 1 - iter 258/432 - loss 2.29011944 - time (sec): 81.50 - samples/sec: 460.98 - lr: 0.000018 - momentum: 0.000000
2023-10-19 03:04:07,705 epoch 1 - iter 301/432 - loss 2.09775363 - time (sec): 95.25 - samples/sec: 459.80 - lr: 0.000021 - momentum: 0.000000
2023-10-19 03:04:21,038 epoch 1 - iter 344/432 - loss 1.95000051 - time (sec): 108.58 - samples/sec: 459.19 - lr: 0.000024 - momentum: 0.000000
2023-10-19 03:04:34,393 epoch 1 - iter 387/432 - loss 1.83143150 - time (sec): 121.93 - samples/sec: 456.61 - lr: 0.000027 - momentum: 0.000000
2023-10-19 03:04:48,237 epoch 1 - iter 430/432 - loss 1.71866002 - time (sec): 135.78 - samples/sec: 453.10 - lr: 0.000030 - momentum: 0.000000
2023-10-19 03:04:48,835 ----------------------------------------------------------------------------------------------------
2023-10-19 03:04:48,835 EPOCH 1 done: loss 1.7140 - lr: 0.000030
2023-10-19 03:05:01,077 DEV : loss 0.5552897453308105 - f1-score (micro avg)  0.6622
2023-10-19 03:05:01,101 saving best model
2023-10-19 03:05:01,517 ----------------------------------------------------------------------------------------------------
2023-10-19 03:05:15,028 epoch 2 - iter 43/432 - loss 0.60311222 - time (sec): 13.51 - samples/sec: 435.31 - lr: 0.000030 - momentum: 0.000000
2023-10-19 03:05:28,407 epoch 2 - iter 86/432 - loss 0.57492961 - time (sec): 26.89 - samples/sec: 450.97 - lr: 0.000029 - momentum: 0.000000
2023-10-19 03:05:42,437 epoch 2 - iter 129/432 - loss 0.57047978 - time (sec): 40.92 - samples/sec: 455.93 - lr: 0.000029 - momentum: 0.000000
2023-10-19 03:05:56,220 epoch 2 - iter 172/432 - loss 0.55732391 - time (sec): 54.70 - samples/sec: 450.69 - lr: 0.000029 - momentum: 0.000000
2023-10-19 03:06:10,611 epoch 2 - iter 215/432 - loss 0.53979872 - time (sec): 69.09 - samples/sec: 447.24 - lr: 0.000028 - momentum: 0.000000
2023-10-19 03:06:24,033 epoch 2 - iter 258/432 - loss 0.52406456 - time (sec): 82.51 - samples/sec: 452.59 - lr: 0.000028 - momentum: 0.000000
2023-10-19 03:06:38,941 epoch 2 - iter 301/432 - loss 0.51367307 - time (sec): 97.42 - samples/sec: 444.61 - lr: 0.000028 - momentum: 0.000000
2023-10-19 03:06:53,084 epoch 2 - iter 344/432 - loss 0.49754137 - time (sec): 111.57 - samples/sec: 443.70 - lr: 0.000027 - momentum: 0.000000
2023-10-19 03:07:07,204 epoch 2 - iter 387/432 - loss 0.48910598 - time (sec): 125.69 - samples/sec: 439.67 - lr: 0.000027 - momentum: 0.000000
2023-10-19 03:07:21,241 epoch 2 - iter 430/432 - loss 0.47410522 - time (sec): 139.72 - samples/sec: 441.12 - lr: 0.000027 - momentum: 0.000000
2023-10-19 03:07:21,774 ----------------------------------------------------------------------------------------------------
2023-10-19 03:07:21,774 EPOCH 2 done: loss 0.4748 - lr: 0.000027
2023-10-19 03:07:34,105 DEV : loss 0.3492853343486786 - f1-score (micro avg)  0.778
2023-10-19 03:07:34,129 saving best model
2023-10-19 03:07:35,382 ----------------------------------------------------------------------------------------------------
2023-10-19 03:07:49,725 epoch 3 - iter 43/432 - loss 0.32742202 - time (sec): 14.34 - samples/sec: 440.94 - lr: 0.000026 - momentum: 0.000000
2023-10-19 03:08:03,255 epoch 3 - iter 86/432 - loss 0.31063739 - time (sec): 27.87 - samples/sec: 437.58 - lr: 0.000026 - momentum: 0.000000
2023-10-19 03:08:18,407 epoch 3 - iter 129/432 - loss 0.31037428 - time (sec): 43.02 - samples/sec: 428.23 - lr: 0.000026 - momentum: 0.000000
2023-10-19 03:08:32,878 epoch 3 - iter 172/432 - loss 0.30284596 - time (sec): 57.49 - samples/sec: 425.34 - lr: 0.000025 - momentum: 0.000000
2023-10-19 03:08:47,535 epoch 3 - iter 215/432 - loss 0.29952088 - time (sec): 72.15 - samples/sec: 425.09 - lr: 0.000025 - momentum: 0.000000
2023-10-19 03:09:02,921 epoch 3 - iter 258/432 - loss 0.29399153 - time (sec): 87.54 - samples/sec: 423.60 - lr: 0.000025 - momentum: 0.000000
2023-10-19 03:09:17,555 epoch 3 - iter 301/432 - loss 0.29404747 - time (sec): 102.17 - samples/sec: 423.61 - lr: 0.000024 - momentum: 0.000000
2023-10-19 03:09:32,378 epoch 3 - iter 344/432 - loss 0.29589502 - time (sec): 116.99 - samples/sec: 424.08 - lr: 0.000024 - momentum: 0.000000
2023-10-19 03:09:46,405 epoch 3 - iter 387/432 - loss 0.29720740 - time (sec): 131.02 - samples/sec: 424.71 - lr: 0.000024 - momentum: 0.000000
2023-10-19 03:10:01,246 epoch 3 - iter 430/432 - loss 0.29631246 - time (sec): 145.86 - samples/sec: 422.71 - lr: 0.000023 - momentum: 0.000000
2023-10-19 03:10:01,690 ----------------------------------------------------------------------------------------------------
2023-10-19 03:10:01,690 EPOCH 3 done: loss 0.2959 - lr: 0.000023
2023-10-19 03:10:14,851 DEV : loss 0.3259921371936798 - f1-score (micro avg)  0.7982
2023-10-19 03:10:14,875 saving best model
2023-10-19 03:10:16,119 ----------------------------------------------------------------------------------------------------
2023-10-19 03:10:31,459 epoch 4 - iter 43/432 - loss 0.20672208 - time (sec): 15.34 - samples/sec: 401.20 - lr: 0.000023 - momentum: 0.000000
2023-10-19 03:10:46,531 epoch 4 - iter 86/432 - loss 0.19852246 - time (sec): 30.41 - samples/sec: 418.47 - lr: 0.000023 - momentum: 0.000000
2023-10-19 03:11:00,882 epoch 4 - iter 129/432 - loss 0.19616414 - time (sec): 44.76 - samples/sec: 421.57 - lr: 0.000022 - momentum: 0.000000
2023-10-19 03:11:14,827 epoch 4 - iter 172/432 - loss 0.20627791 - time (sec): 58.71 - samples/sec: 424.33 - lr: 0.000022 - momentum: 0.000000
2023-10-19 03:11:29,748 epoch 4 - iter 215/432 - loss 0.21224683 - time (sec): 73.63 - samples/sec: 421.12 - lr: 0.000022 - momentum: 0.000000
2023-10-19 03:11:43,731 epoch 4 - iter 258/432 - loss 0.21227075 - time (sec): 87.61 - samples/sec: 424.32 - lr: 0.000021 - momentum: 0.000000
2023-10-19 03:11:58,975 epoch 4 - iter 301/432 - loss 0.21292796 - time (sec): 102.85 - samples/sec: 419.09 - lr: 0.000021 - momentum: 0.000000
2023-10-19 03:12:13,655 epoch 4 - iter 344/432 - loss 0.21307796 - time (sec): 117.54 - samples/sec: 418.07 - lr: 0.000021 - momentum: 0.000000
2023-10-19 03:12:29,419 epoch 4 - iter 387/432 - loss 0.21476478 - time (sec): 133.30 - samples/sec: 413.81 - lr: 0.000020 - momentum: 0.000000
2023-10-19 03:12:44,470 epoch 4 - iter 430/432 - loss 0.21820196 - time (sec): 148.35 - samples/sec: 414.61 - lr: 0.000020 - momentum: 0.000000
2023-10-19 03:12:44,864 ----------------------------------------------------------------------------------------------------
2023-10-19 03:12:44,864 EPOCH 4 done: loss 0.2178 - lr: 0.000020
2023-10-19 03:12:58,149 DEV : loss 0.2954443395137787 - f1-score (micro avg)  0.8237
2023-10-19 03:12:58,173 saving best model
2023-10-19 03:12:59,444 ----------------------------------------------------------------------------------------------------
2023-10-19 03:13:15,154 epoch 5 - iter 43/432 - loss 0.15390087 - time (sec): 15.71 - samples/sec: 415.14 - lr: 0.000020 - momentum: 0.000000
2023-10-19 03:13:30,869 epoch 5 - iter 86/432 - loss 0.15550679 - time (sec): 31.42 - samples/sec: 403.88 - lr: 0.000019 - momentum: 0.000000
2023-10-19 03:13:45,378 epoch 5 - iter 129/432 - loss 0.15604865 - time (sec): 45.93 - samples/sec: 402.33 - lr: 0.000019 - momentum: 0.000000
2023-10-19 03:14:00,384 epoch 5 - iter 172/432 - loss 0.15506530 - time (sec): 60.94 - samples/sec: 408.22 - lr: 0.000019 - momentum: 0.000000
2023-10-19 03:14:14,455 epoch 5 - iter 215/432 - loss 0.15758901 - time (sec): 75.01 - samples/sec: 410.23 - lr: 0.000018 - momentum: 0.000000
2023-10-19 03:14:29,344 epoch 5 - iter 258/432 - loss 0.15953645 - time (sec): 89.90 - samples/sec: 411.80 - lr: 0.000018 - momentum: 0.000000
2023-10-19 03:14:44,219 epoch 5 - iter 301/432 - loss 0.15917566 - time (sec): 104.77 - samples/sec: 409.05 - lr: 0.000018 - momentum: 0.000000
2023-10-19 03:14:59,634 epoch 5 - iter 344/432 - loss 0.15850960 - time (sec): 120.19 - samples/sec: 409.33 - lr: 0.000017 - momentum: 0.000000
2023-10-19 03:15:15,342 epoch 5 - iter 387/432 - loss 0.16067848 - time (sec): 135.90 - samples/sec: 407.33 - lr: 0.000017 - momentum: 0.000000
2023-10-19 03:15:29,540 epoch 5 - iter 430/432 - loss 0.16521243 - time (sec): 150.09 - samples/sec: 410.51 - lr: 0.000017 - momentum: 0.000000
2023-10-19 03:15:30,009 ----------------------------------------------------------------------------------------------------
2023-10-19 03:15:30,010 EPOCH 5 done: loss 0.1649 - lr: 0.000017
2023-10-19 03:15:43,137 DEV : loss 0.3015434145927429 - f1-score (micro avg)  0.8299
2023-10-19 03:15:43,162 saving best model
2023-10-19 03:15:44,425 ----------------------------------------------------------------------------------------------------
2023-10-19 03:15:58,770 epoch 6 - iter 43/432 - loss 0.13202038 - time (sec): 14.34 - samples/sec: 417.18 - lr: 0.000016 - momentum: 0.000000
2023-10-19 03:16:13,650 epoch 6 - iter 86/432 - loss 0.12553836 - time (sec): 29.22 - samples/sec: 407.79 - lr: 0.000016 - momentum: 0.000000
2023-10-19 03:16:28,364 epoch 6 - iter 129/432 - loss 0.12939794 - time (sec): 43.94 - samples/sec: 417.91 - lr: 0.000016 - momentum: 0.000000
2023-10-19 03:16:42,571 epoch 6 - iter 172/432 - loss 0.12769753 - time (sec): 58.14 - samples/sec: 425.46 - lr: 0.000015 - momentum: 0.000000
2023-10-19 03:16:56,766 epoch 6 - iter 215/432 - loss 0.12873983 - time (sec): 72.34 - samples/sec: 426.63 - lr: 0.000015 - momentum: 0.000000
2023-10-19 03:17:11,198 epoch 6 - iter 258/432 - loss 0.13206339 - time (sec): 86.77 - samples/sec: 424.89 - lr: 0.000015 - momentum: 0.000000
2023-10-19 03:17:25,555 epoch 6 - iter 301/432 - loss 0.12993628 - time (sec): 101.13 - samples/sec: 422.61 - lr: 0.000014 - momentum: 0.000000
2023-10-19 03:17:38,273 epoch 6 - iter 344/432 - loss 0.13004768 - time (sec): 113.85 - samples/sec: 431.76 - lr: 0.000014 - momentum: 0.000000
2023-10-19 03:17:52,227 epoch 6 - iter 387/432 - loss 0.13032000 - time (sec): 127.80 - samples/sec: 434.94 - lr: 0.000014 - momentum: 0.000000
2023-10-19 03:18:05,986 epoch 6 - iter 430/432 - loss 0.13151672 - time (sec): 141.56 - samples/sec: 435.39 - lr: 0.000013 - momentum: 0.000000
2023-10-19 03:18:06,429 ----------------------------------------------------------------------------------------------------
2023-10-19 03:18:06,429 EPOCH 6 done: loss 0.1313 - lr: 0.000013
2023-10-19 03:18:18,383 DEV : loss 0.3147521913051605 - f1-score (micro avg)  0.837
2023-10-19 03:18:18,407 saving best model
2023-10-19 03:18:19,654 ----------------------------------------------------------------------------------------------------
2023-10-19 03:18:33,965 epoch 7 - iter 43/432 - loss 0.09978456 - time (sec): 14.31 - samples/sec: 439.36 - lr: 0.000013 - momentum: 0.000000
2023-10-19 03:18:47,773 epoch 7 - iter 86/432 - loss 0.10425709 - time (sec): 28.12 - samples/sec: 442.24 - lr: 0.000013 - momentum: 0.000000
2023-10-19 03:19:01,199 epoch 7 - iter 129/432 - loss 0.10081928 - time (sec): 41.54 - samples/sec: 444.14 - lr: 0.000012 - momentum: 0.000000
2023-10-19 03:19:15,447 epoch 7 - iter 172/432 - loss 0.10228024 - time (sec): 55.79 - samples/sec: 445.10 - lr: 0.000012 - momentum: 0.000000
2023-10-19 03:19:28,556 epoch 7 - iter 215/432 - loss 0.09910047 - time (sec): 68.90 - samples/sec: 447.41 - lr: 0.000012 - momentum: 0.000000
2023-10-19 03:19:42,583 epoch 7 - iter 258/432 - loss 0.09892292 - time (sec): 82.93 - samples/sec: 445.88 - lr: 0.000011 - momentum: 0.000000
2023-10-19 03:19:56,325 epoch 7 - iter 301/432 - loss 0.09965975 - time (sec): 96.67 - samples/sec: 450.23 - lr: 0.000011 - momentum: 0.000000
2023-10-19 03:20:09,811 epoch 7 - iter 344/432 - loss 0.10180121 - time (sec): 110.16 - samples/sec: 449.26 - lr: 0.000011 - momentum: 0.000000
2023-10-19 03:20:23,439 epoch 7 - iter 387/432 - loss 0.10327251 - time (sec): 123.78 - samples/sec: 447.78 - lr: 0.000010 - momentum: 0.000000
2023-10-19 03:20:37,405 epoch 7 - iter 430/432 - loss 0.10270499 - time (sec): 137.75 - samples/sec: 448.10 - lr: 0.000010 - momentum: 0.000000
2023-10-19 03:20:38,070 ----------------------------------------------------------------------------------------------------
2023-10-19 03:20:38,070 EPOCH 7 done: loss 0.1030 - lr: 0.000010
2023-10-19 03:20:50,296 DEV : loss 0.3245373070240021 - f1-score (micro avg)  0.8369
2023-10-19 03:20:50,321 ----------------------------------------------------------------------------------------------------
2023-10-19 03:21:03,617 epoch 8 - iter 43/432 - loss 0.08836329 - time (sec): 13.30 - samples/sec: 459.56 - lr: 0.000010 - momentum: 0.000000
2023-10-19 03:21:18,106 epoch 8 - iter 86/432 - loss 0.08588265 - time (sec): 27.78 - samples/sec: 423.45 - lr: 0.000009 - momentum: 0.000000
2023-10-19 03:21:32,684 epoch 8 - iter 129/432 - loss 0.08683372 - time (sec): 42.36 - samples/sec: 424.46 - lr: 0.000009 - momentum: 0.000000
2023-10-19 03:21:46,306 epoch 8 - iter 172/432 - loss 0.08510177 - time (sec): 55.98 - samples/sec: 440.66 - lr: 0.000009 - momentum: 0.000000
2023-10-19 03:21:59,965 epoch 8 - iter 215/432 - loss 0.08335334 - time (sec): 69.64 - samples/sec: 439.41 - lr: 0.000008 - momentum: 0.000000
2023-10-19 03:22:13,850 epoch 8 - iter 258/432 - loss 0.08326947 - time (sec): 83.53 - samples/sec: 439.89 - lr: 0.000008 - momentum: 0.000000
2023-10-19 03:22:28,357 epoch 8 - iter 301/432 - loss 0.08295965 - time (sec): 98.03 - samples/sec: 438.39 - lr: 0.000008 - momentum: 0.000000
2023-10-19 03:22:42,156 epoch 8 - iter 344/432 - loss 0.08364151 - time (sec): 111.83 - samples/sec: 440.99 - lr: 0.000007 - momentum: 0.000000
2023-10-19 03:22:55,572 epoch 8 - iter 387/432 - loss 0.08380031 - time (sec): 125.25 - samples/sec: 443.16 - lr: 0.000007 - momentum: 0.000000
2023-10-19 03:23:09,667 epoch 8 - iter 430/432 - loss 0.08256002 - time (sec): 139.34 - samples/sec: 442.31 - lr: 0.000007 - momentum: 0.000000
2023-10-19 03:23:10,370 ----------------------------------------------------------------------------------------------------
2023-10-19 03:23:10,370 EPOCH 8 done: loss 0.0828 - lr: 0.000007
2023-10-19 03:23:22,392 DEV : loss 0.34586212038993835 - f1-score (micro avg)  0.8435
2023-10-19 03:23:22,416 saving best model
2023-10-19 03:23:24,523 ----------------------------------------------------------------------------------------------------
2023-10-19 03:23:37,690 epoch 9 - iter 43/432 - loss 0.06404456 - time (sec): 13.17 - samples/sec: 467.43 - lr: 0.000006 - momentum: 0.000000
2023-10-19 03:23:51,542 epoch 9 - iter 86/432 - loss 0.06912955 - time (sec): 27.02 - samples/sec: 463.82 - lr: 0.000006 - momentum: 0.000000
2023-10-19 03:24:04,557 epoch 9 - iter 129/432 - loss 0.06602599 - time (sec): 40.03 - samples/sec: 469.64 - lr: 0.000006 - momentum: 0.000000
2023-10-19 03:24:18,441 epoch 9 - iter 172/432 - loss 0.06580031 - time (sec): 53.92 - samples/sec: 468.30 - lr: 0.000005 - momentum: 0.000000
2023-10-19 03:24:32,240 epoch 9 - iter 215/432 - loss 0.06730200 - time (sec): 67.71 - samples/sec: 458.39 - lr: 0.000005 - momentum: 0.000000
2023-10-19 03:24:45,981 epoch 9 - iter 258/432 - loss 0.06853445 - time (sec): 81.46 - samples/sec: 456.87 - lr: 0.000005 - momentum: 0.000000
2023-10-19 03:24:59,976 epoch 9 - iter 301/432 - loss 0.06801088 - time (sec): 95.45 - samples/sec: 454.91 - lr: 0.000004 - momentum: 0.000000
2023-10-19 03:25:13,563 epoch 9 - iter 344/432 - loss 0.06752770 - time (sec): 109.04 - samples/sec: 453.30 - lr: 0.000004 - momentum: 0.000000
2023-10-19 03:25:27,798 epoch 9 - iter 387/432 - loss 0.06815869 - time (sec): 123.27 - samples/sec: 450.85 - lr: 0.000004 - momentum: 0.000000
2023-10-19 03:25:41,524 epoch 9 - iter 430/432 - loss 0.06769484 - time (sec): 137.00 - samples/sec: 449.74 - lr: 0.000003 - momentum: 0.000000
2023-10-19 03:25:41,970 ----------------------------------------------------------------------------------------------------
2023-10-19 03:25:41,971 EPOCH 9 done: loss 0.0678 - lr: 0.000003
2023-10-19 03:25:54,505 DEV : loss 0.35387569665908813 - f1-score (micro avg)  0.8449
2023-10-19 03:25:54,530 saving best model
2023-10-19 03:25:55,769 ----------------------------------------------------------------------------------------------------
2023-10-19 03:26:08,762 epoch 10 - iter 43/432 - loss 0.05227225 - time (sec): 12.99 - samples/sec: 462.56 - lr: 0.000003 - momentum: 0.000000
2023-10-19 03:26:22,942 epoch 10 - iter 86/432 - loss 0.05341720 - time (sec): 27.17 - samples/sec: 438.15 - lr: 0.000003 - momentum: 0.000000
2023-10-19 03:26:35,887 epoch 10 - iter 129/432 - loss 0.05487206 - time (sec): 40.12 - samples/sec: 454.00 - lr: 0.000002 - momentum: 0.000000
2023-10-19 03:26:50,149 epoch 10 - iter 172/432 - loss 0.05596544 - time (sec): 54.38 - samples/sec: 461.20 - lr: 0.000002 - momentum: 0.000000
2023-10-19 03:27:03,985 epoch 10 - iter 215/432 - loss 0.05733517 - time (sec): 68.21 - samples/sec: 458.73 - lr: 0.000002 - momentum: 0.000000
2023-10-19 03:27:17,924 epoch 10 - iter 258/432 - loss 0.05765922 - time (sec): 82.15 - samples/sec: 454.50 - lr: 0.000001 - momentum: 0.000000
2023-10-19 03:27:30,964 epoch 10 - iter 301/432 - loss 0.05769597 - time (sec): 95.19 - samples/sec: 455.32 - lr: 0.000001 - momentum: 0.000000
2023-10-19 03:27:45,282 epoch 10 - iter 344/432 - loss 0.05926565 - time (sec): 109.51 - samples/sec: 453.13 - lr: 0.000001 - momentum: 0.000000
2023-10-19 03:27:59,510 epoch 10 - iter 387/432 - loss 0.05821429 - time (sec): 123.74 - samples/sec: 448.10 - lr: 0.000000 - momentum: 0.000000
2023-10-19 03:28:12,650 epoch 10 - iter 430/432 - loss 0.05761600 - time (sec): 136.88 - samples/sec: 450.35 - lr: 0.000000 - momentum: 0.000000
2023-10-19 03:28:13,196 ----------------------------------------------------------------------------------------------------
2023-10-19 03:28:13,196 EPOCH 10 done: loss 0.0576 - lr: 0.000000
2023-10-19 03:28:25,462 DEV : loss 0.3606269955635071 - f1-score (micro avg)  0.841
2023-10-19 03:28:25,916 ----------------------------------------------------------------------------------------------------
2023-10-19 03:28:25,917 Loading model from best epoch ...
2023-10-19 03:28:28,137 SequenceTagger predicts: Dictionary with 81 tags: O, S-location-route, B-location-route, E-location-route, I-location-route, S-location-stop, B-location-stop, E-location-stop, I-location-stop, S-trigger, B-trigger, E-trigger, I-trigger, S-organization-company, B-organization-company, E-organization-company, I-organization-company, S-location-city, B-location-city, E-location-city, I-location-city, S-location, B-location, E-location, I-location, S-event-cause, B-event-cause, E-event-cause, I-event-cause, S-location-street, B-location-street, E-location-street, I-location-street, S-time, B-time, E-time, I-time, S-date, B-date, E-date, I-date, S-number, B-number, E-number, I-number, S-duration, B-duration, E-duration, I-duration, S-organization
2023-10-19 03:28:44,997 
Results:
- F-score (micro) 0.7571
- F-score (macro) 0.5822
- Accuracy 0.6503

By class:
                      precision    recall  f1-score   support

             trigger     0.6612    0.5342    0.5910       833
       location-stop     0.8622    0.8340    0.8478       765
            location     0.7932    0.8421    0.8169       665
       location-city     0.8075    0.8746    0.8397       566
                date     0.8753    0.8376    0.8560       394
     location-street     0.9339    0.8782    0.9052       386
                time     0.7917    0.8906    0.8382       256
      location-route     0.8205    0.6761    0.7413       284
organization-company     0.7867    0.7024    0.7421       252
            distance     0.9824    1.0000    0.9911       167
              number     0.6776    0.8322    0.7470       149
            duration     0.3636    0.3436    0.3533       163
         event-cause     0.0000    0.0000    0.0000         0
       disaster-type     0.8788    0.4203    0.5686        69
        organization     0.5185    0.5000    0.5091        28
              person     0.5556    1.0000    0.7143        10
                 set     0.0000    0.0000    0.0000         0
        org-position     0.0000    0.0000    0.0000         1
               money     0.0000    0.0000    0.0000         0

           micro avg     0.7516    0.7626    0.7571      4988
           macro avg     0.5952    0.5877    0.5822      4988
        weighted avg     0.7897    0.7626    0.7725      4988

2023-10-19 03:28:44,997 ----------------------------------------------------------------------------------------------------