Upload ./training.log with huggingface_hub
Browse files- training.log +246 -0
training.log
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-23 15:54:49,408 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-23 15:54:49,409 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=25, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-23 15:54:49,409 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-23 15:54:49,409 MultiCorpus: 1100 train + 206 dev + 240 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
|
53 |
+
2023-10-23 15:54:49,409 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-23 15:54:49,409 Train: 1100 sentences
|
55 |
+
2023-10-23 15:54:49,409 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-23 15:54:49,409 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-23 15:54:49,409 Training Params:
|
58 |
+
2023-10-23 15:54:49,409 - learning_rate: "3e-05"
|
59 |
+
2023-10-23 15:54:49,409 - mini_batch_size: "8"
|
60 |
+
2023-10-23 15:54:49,409 - max_epochs: "10"
|
61 |
+
2023-10-23 15:54:49,410 - shuffle: "True"
|
62 |
+
2023-10-23 15:54:49,410 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-23 15:54:49,410 Plugins:
|
64 |
+
2023-10-23 15:54:49,410 - TensorboardLogger
|
65 |
+
2023-10-23 15:54:49,410 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-23 15:54:49,410 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-23 15:54:49,410 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-23 15:54:49,410 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-23 15:54:49,410 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-23 15:54:49,410 Computation:
|
71 |
+
2023-10-23 15:54:49,410 - compute on device: cuda:0
|
72 |
+
2023-10-23 15:54:49,410 - embedding storage: none
|
73 |
+
2023-10-23 15:54:49,410 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-23 15:54:49,410 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
|
75 |
+
2023-10-23 15:54:49,410 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-23 15:54:49,410 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-23 15:54:49,410 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-23 15:54:50,141 epoch 1 - iter 13/138 - loss 3.00405917 - time (sec): 0.73 - samples/sec: 2373.99 - lr: 0.000003 - momentum: 0.000000
|
79 |
+
2023-10-23 15:54:50,875 epoch 1 - iter 26/138 - loss 2.56287802 - time (sec): 1.46 - samples/sec: 2693.60 - lr: 0.000005 - momentum: 0.000000
|
80 |
+
2023-10-23 15:54:51,628 epoch 1 - iter 39/138 - loss 2.05445276 - time (sec): 2.22 - samples/sec: 2813.21 - lr: 0.000008 - momentum: 0.000000
|
81 |
+
2023-10-23 15:54:52,397 epoch 1 - iter 52/138 - loss 1.76142833 - time (sec): 2.99 - samples/sec: 2810.56 - lr: 0.000011 - momentum: 0.000000
|
82 |
+
2023-10-23 15:54:53,182 epoch 1 - iter 65/138 - loss 1.54424671 - time (sec): 3.77 - samples/sec: 2837.08 - lr: 0.000014 - momentum: 0.000000
|
83 |
+
2023-10-23 15:54:53,971 epoch 1 - iter 78/138 - loss 1.35513027 - time (sec): 4.56 - samples/sec: 2841.14 - lr: 0.000017 - momentum: 0.000000
|
84 |
+
2023-10-23 15:54:54,733 epoch 1 - iter 91/138 - loss 1.22250128 - time (sec): 5.32 - samples/sec: 2819.82 - lr: 0.000020 - momentum: 0.000000
|
85 |
+
2023-10-23 15:54:55,485 epoch 1 - iter 104/138 - loss 1.11598652 - time (sec): 6.07 - samples/sec: 2841.53 - lr: 0.000022 - momentum: 0.000000
|
86 |
+
2023-10-23 15:54:56,239 epoch 1 - iter 117/138 - loss 1.02403952 - time (sec): 6.83 - samples/sec: 2874.76 - lr: 0.000025 - momentum: 0.000000
|
87 |
+
2023-10-23 15:54:56,997 epoch 1 - iter 130/138 - loss 0.95915259 - time (sec): 7.59 - samples/sec: 2853.35 - lr: 0.000028 - momentum: 0.000000
|
88 |
+
2023-10-23 15:54:57,457 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-23 15:54:57,457 EPOCH 1 done: loss 0.9234 - lr: 0.000028
|
90 |
+
2023-10-23 15:54:58,036 DEV : loss 0.19589945673942566 - f1-score (micro avg) 0.7295
|
91 |
+
2023-10-23 15:54:58,042 saving best model
|
92 |
+
2023-10-23 15:54:58,436 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-23 15:54:59,187 epoch 2 - iter 13/138 - loss 0.24513018 - time (sec): 0.75 - samples/sec: 3157.13 - lr: 0.000030 - momentum: 0.000000
|
94 |
+
2023-10-23 15:54:59,947 epoch 2 - iter 26/138 - loss 0.23709938 - time (sec): 1.51 - samples/sec: 2974.25 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-23 15:55:00,669 epoch 2 - iter 39/138 - loss 0.20795711 - time (sec): 2.23 - samples/sec: 2891.60 - lr: 0.000029 - momentum: 0.000000
|
96 |
+
2023-10-23 15:55:01,392 epoch 2 - iter 52/138 - loss 0.20218652 - time (sec): 2.95 - samples/sec: 2802.42 - lr: 0.000029 - momentum: 0.000000
|
97 |
+
2023-10-23 15:55:02,109 epoch 2 - iter 65/138 - loss 0.19026323 - time (sec): 3.67 - samples/sec: 2809.17 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-23 15:55:02,835 epoch 2 - iter 78/138 - loss 0.18132874 - time (sec): 4.40 - samples/sec: 2844.07 - lr: 0.000028 - momentum: 0.000000
|
99 |
+
2023-10-23 15:55:03,562 epoch 2 - iter 91/138 - loss 0.17220623 - time (sec): 5.12 - samples/sec: 2839.33 - lr: 0.000028 - momentum: 0.000000
|
100 |
+
2023-10-23 15:55:04,321 epoch 2 - iter 104/138 - loss 0.16856554 - time (sec): 5.88 - samples/sec: 2842.82 - lr: 0.000028 - momentum: 0.000000
|
101 |
+
2023-10-23 15:55:05,080 epoch 2 - iter 117/138 - loss 0.17136679 - time (sec): 6.64 - samples/sec: 2867.72 - lr: 0.000027 - momentum: 0.000000
|
102 |
+
2023-10-23 15:55:05,831 epoch 2 - iter 130/138 - loss 0.16835947 - time (sec): 7.39 - samples/sec: 2904.80 - lr: 0.000027 - momentum: 0.000000
|
103 |
+
2023-10-23 15:55:06,309 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-23 15:55:06,309 EPOCH 2 done: loss 0.1688 - lr: 0.000027
|
105 |
+
2023-10-23 15:55:06,848 DEV : loss 0.1276298463344574 - f1-score (micro avg) 0.8109
|
106 |
+
2023-10-23 15:55:06,854 saving best model
|
107 |
+
2023-10-23 15:55:07,392 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-23 15:55:08,123 epoch 3 - iter 13/138 - loss 0.11073512 - time (sec): 0.73 - samples/sec: 3098.87 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-23 15:55:08,869 epoch 3 - iter 26/138 - loss 0.09498375 - time (sec): 1.47 - samples/sec: 3028.40 - lr: 0.000026 - momentum: 0.000000
|
110 |
+
2023-10-23 15:55:09,584 epoch 3 - iter 39/138 - loss 0.09514575 - time (sec): 2.19 - samples/sec: 2991.48 - lr: 0.000026 - momentum: 0.000000
|
111 |
+
2023-10-23 15:55:10,302 epoch 3 - iter 52/138 - loss 0.10425731 - time (sec): 2.91 - samples/sec: 3042.18 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-23 15:55:11,014 epoch 3 - iter 65/138 - loss 0.09912849 - time (sec): 3.62 - samples/sec: 3030.06 - lr: 0.000025 - momentum: 0.000000
|
113 |
+
2023-10-23 15:55:11,744 epoch 3 - iter 78/138 - loss 0.09280214 - time (sec): 4.35 - samples/sec: 3000.12 - lr: 0.000025 - momentum: 0.000000
|
114 |
+
2023-10-23 15:55:12,486 epoch 3 - iter 91/138 - loss 0.09344571 - time (sec): 5.09 - samples/sec: 2982.33 - lr: 0.000025 - momentum: 0.000000
|
115 |
+
2023-10-23 15:55:13,228 epoch 3 - iter 104/138 - loss 0.09045760 - time (sec): 5.83 - samples/sec: 2967.07 - lr: 0.000024 - momentum: 0.000000
|
116 |
+
2023-10-23 15:55:13,972 epoch 3 - iter 117/138 - loss 0.09303884 - time (sec): 6.58 - samples/sec: 2971.02 - lr: 0.000024 - momentum: 0.000000
|
117 |
+
2023-10-23 15:55:14,712 epoch 3 - iter 130/138 - loss 0.09075384 - time (sec): 7.32 - samples/sec: 2950.98 - lr: 0.000024 - momentum: 0.000000
|
118 |
+
2023-10-23 15:55:15,164 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-23 15:55:15,164 EPOCH 3 done: loss 0.0923 - lr: 0.000024
|
120 |
+
2023-10-23 15:55:15,702 DEV : loss 0.12066850066184998 - f1-score (micro avg) 0.8379
|
121 |
+
2023-10-23 15:55:15,708 saving best model
|
122 |
+
2023-10-23 15:55:16,258 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-23 15:55:16,991 epoch 4 - iter 13/138 - loss 0.11350050 - time (sec): 0.73 - samples/sec: 3101.74 - lr: 0.000023 - momentum: 0.000000
|
124 |
+
2023-10-23 15:55:17,700 epoch 4 - iter 26/138 - loss 0.08075514 - time (sec): 1.44 - samples/sec: 3158.96 - lr: 0.000023 - momentum: 0.000000
|
125 |
+
2023-10-23 15:55:18,428 epoch 4 - iter 39/138 - loss 0.07346125 - time (sec): 2.17 - samples/sec: 3008.78 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-23 15:55:19,126 epoch 4 - iter 52/138 - loss 0.06656305 - time (sec): 2.87 - samples/sec: 2975.49 - lr: 0.000022 - momentum: 0.000000
|
127 |
+
2023-10-23 15:55:19,869 epoch 4 - iter 65/138 - loss 0.06313594 - time (sec): 3.61 - samples/sec: 2992.76 - lr: 0.000022 - momentum: 0.000000
|
128 |
+
2023-10-23 15:55:20,597 epoch 4 - iter 78/138 - loss 0.06522584 - time (sec): 4.34 - samples/sec: 3016.50 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-23 15:55:21,310 epoch 4 - iter 91/138 - loss 0.06281046 - time (sec): 5.05 - samples/sec: 3010.97 - lr: 0.000021 - momentum: 0.000000
|
130 |
+
2023-10-23 15:55:22,054 epoch 4 - iter 104/138 - loss 0.06475346 - time (sec): 5.79 - samples/sec: 3005.96 - lr: 0.000021 - momentum: 0.000000
|
131 |
+
2023-10-23 15:55:22,749 epoch 4 - iter 117/138 - loss 0.06295527 - time (sec): 6.49 - samples/sec: 2979.84 - lr: 0.000021 - momentum: 0.000000
|
132 |
+
2023-10-23 15:55:23,481 epoch 4 - iter 130/138 - loss 0.06220209 - time (sec): 7.22 - samples/sec: 2944.77 - lr: 0.000020 - momentum: 0.000000
|
133 |
+
2023-10-23 15:55:23,918 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-23 15:55:23,918 EPOCH 4 done: loss 0.0608 - lr: 0.000020
|
135 |
+
2023-10-23 15:55:24,446 DEV : loss 0.1310967206954956 - f1-score (micro avg) 0.8609
|
136 |
+
2023-10-23 15:55:24,452 saving best model
|
137 |
+
2023-10-23 15:55:24,998 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-23 15:55:25,720 epoch 5 - iter 13/138 - loss 0.05355793 - time (sec): 0.72 - samples/sec: 2992.96 - lr: 0.000020 - momentum: 0.000000
|
139 |
+
2023-10-23 15:55:26,423 epoch 5 - iter 26/138 - loss 0.06962420 - time (sec): 1.42 - samples/sec: 2987.17 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-23 15:55:27,155 epoch 5 - iter 39/138 - loss 0.05818477 - time (sec): 2.16 - samples/sec: 3006.77 - lr: 0.000019 - momentum: 0.000000
|
141 |
+
2023-10-23 15:55:27,903 epoch 5 - iter 52/138 - loss 0.04671793 - time (sec): 2.90 - samples/sec: 2959.51 - lr: 0.000019 - momentum: 0.000000
|
142 |
+
2023-10-23 15:55:28,647 epoch 5 - iter 65/138 - loss 0.04604634 - time (sec): 3.65 - samples/sec: 2997.02 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-23 15:55:29,391 epoch 5 - iter 78/138 - loss 0.04370062 - time (sec): 4.39 - samples/sec: 2928.05 - lr: 0.000018 - momentum: 0.000000
|
144 |
+
2023-10-23 15:55:30,130 epoch 5 - iter 91/138 - loss 0.04395983 - time (sec): 5.13 - samples/sec: 2938.58 - lr: 0.000018 - momentum: 0.000000
|
145 |
+
2023-10-23 15:55:30,889 epoch 5 - iter 104/138 - loss 0.04812229 - time (sec): 5.89 - samples/sec: 2925.69 - lr: 0.000018 - momentum: 0.000000
|
146 |
+
2023-10-23 15:55:31,639 epoch 5 - iter 117/138 - loss 0.04842003 - time (sec): 6.64 - samples/sec: 2891.87 - lr: 0.000017 - momentum: 0.000000
|
147 |
+
2023-10-23 15:55:32,383 epoch 5 - iter 130/138 - loss 0.04784414 - time (sec): 7.38 - samples/sec: 2887.52 - lr: 0.000017 - momentum: 0.000000
|
148 |
+
2023-10-23 15:55:32,838 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-23 15:55:32,838 EPOCH 5 done: loss 0.0472 - lr: 0.000017
|
150 |
+
2023-10-23 15:55:33,377 DEV : loss 0.13556700944900513 - f1-score (micro avg) 0.881
|
151 |
+
2023-10-23 15:55:33,383 saving best model
|
152 |
+
2023-10-23 15:55:33,924 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-23 15:55:34,699 epoch 6 - iter 13/138 - loss 0.00447347 - time (sec): 0.77 - samples/sec: 3105.62 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-10-23 15:55:35,433 epoch 6 - iter 26/138 - loss 0.03663128 - time (sec): 1.51 - samples/sec: 2857.73 - lr: 0.000016 - momentum: 0.000000
|
155 |
+
2023-10-23 15:55:36,190 epoch 6 - iter 39/138 - loss 0.02970269 - time (sec): 2.26 - samples/sec: 2836.41 - lr: 0.000016 - momentum: 0.000000
|
156 |
+
2023-10-23 15:55:36,929 epoch 6 - iter 52/138 - loss 0.03038221 - time (sec): 3.00 - samples/sec: 2898.43 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-10-23 15:55:37,666 epoch 6 - iter 65/138 - loss 0.02843939 - time (sec): 3.74 - samples/sec: 2877.33 - lr: 0.000015 - momentum: 0.000000
|
158 |
+
2023-10-23 15:55:38,403 epoch 6 - iter 78/138 - loss 0.03163609 - time (sec): 4.48 - samples/sec: 2867.41 - lr: 0.000015 - momentum: 0.000000
|
159 |
+
2023-10-23 15:55:39,145 epoch 6 - iter 91/138 - loss 0.03089174 - time (sec): 5.22 - samples/sec: 2838.67 - lr: 0.000015 - momentum: 0.000000
|
160 |
+
2023-10-23 15:55:39,889 epoch 6 - iter 104/138 - loss 0.03317619 - time (sec): 5.96 - samples/sec: 2839.11 - lr: 0.000014 - momentum: 0.000000
|
161 |
+
2023-10-23 15:55:40,628 epoch 6 - iter 117/138 - loss 0.03642630 - time (sec): 6.70 - samples/sec: 2865.20 - lr: 0.000014 - momentum: 0.000000
|
162 |
+
2023-10-23 15:55:41,372 epoch 6 - iter 130/138 - loss 0.03570597 - time (sec): 7.44 - samples/sec: 2869.61 - lr: 0.000014 - momentum: 0.000000
|
163 |
+
2023-10-23 15:55:41,829 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-23 15:55:41,829 EPOCH 6 done: loss 0.0388 - lr: 0.000014
|
165 |
+
2023-10-23 15:55:42,364 DEV : loss 0.12986908853054047 - f1-score (micro avg) 0.8857
|
166 |
+
2023-10-23 15:55:42,370 saving best model
|
167 |
+
2023-10-23 15:55:42,912 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-23 15:55:43,641 epoch 7 - iter 13/138 - loss 0.04560714 - time (sec): 0.72 - samples/sec: 3046.17 - lr: 0.000013 - momentum: 0.000000
|
169 |
+
2023-10-23 15:55:44,362 epoch 7 - iter 26/138 - loss 0.04097470 - time (sec): 1.45 - samples/sec: 2967.32 - lr: 0.000013 - momentum: 0.000000
|
170 |
+
2023-10-23 15:55:45,104 epoch 7 - iter 39/138 - loss 0.03509241 - time (sec): 2.19 - samples/sec: 2861.35 - lr: 0.000012 - momentum: 0.000000
|
171 |
+
2023-10-23 15:55:45,854 epoch 7 - iter 52/138 - loss 0.03079550 - time (sec): 2.94 - samples/sec: 2872.75 - lr: 0.000012 - momentum: 0.000000
|
172 |
+
2023-10-23 15:55:46,591 epoch 7 - iter 65/138 - loss 0.02734683 - time (sec): 3.67 - samples/sec: 2913.33 - lr: 0.000012 - momentum: 0.000000
|
173 |
+
2023-10-23 15:55:47,325 epoch 7 - iter 78/138 - loss 0.02674504 - time (sec): 4.41 - samples/sec: 2904.82 - lr: 0.000012 - momentum: 0.000000
|
174 |
+
2023-10-23 15:55:48,052 epoch 7 - iter 91/138 - loss 0.02597626 - time (sec): 5.14 - samples/sec: 2898.08 - lr: 0.000011 - momentum: 0.000000
|
175 |
+
2023-10-23 15:55:48,786 epoch 7 - iter 104/138 - loss 0.02279908 - time (sec): 5.87 - samples/sec: 2938.68 - lr: 0.000011 - momentum: 0.000000
|
176 |
+
2023-10-23 15:55:49,527 epoch 7 - iter 117/138 - loss 0.02768589 - time (sec): 6.61 - samples/sec: 2959.75 - lr: 0.000011 - momentum: 0.000000
|
177 |
+
2023-10-23 15:55:50,264 epoch 7 - iter 130/138 - loss 0.02689635 - time (sec): 7.35 - samples/sec: 2936.27 - lr: 0.000010 - momentum: 0.000000
|
178 |
+
2023-10-23 15:55:50,716 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-23 15:55:50,716 EPOCH 7 done: loss 0.0261 - lr: 0.000010
|
180 |
+
2023-10-23 15:55:51,252 DEV : loss 0.14399342238903046 - f1-score (micro avg) 0.8766
|
181 |
+
2023-10-23 15:55:51,258 ----------------------------------------------------------------------------------------------------
|
182 |
+
2023-10-23 15:55:52,007 epoch 8 - iter 13/138 - loss 0.03629714 - time (sec): 0.75 - samples/sec: 2708.89 - lr: 0.000010 - momentum: 0.000000
|
183 |
+
2023-10-23 15:55:52,767 epoch 8 - iter 26/138 - loss 0.02677088 - time (sec): 1.51 - samples/sec: 2954.84 - lr: 0.000009 - momentum: 0.000000
|
184 |
+
2023-10-23 15:55:53,495 epoch 8 - iter 39/138 - loss 0.03630954 - time (sec): 2.24 - samples/sec: 2889.29 - lr: 0.000009 - momentum: 0.000000
|
185 |
+
2023-10-23 15:55:54,276 epoch 8 - iter 52/138 - loss 0.03402449 - time (sec): 3.02 - samples/sec: 2934.37 - lr: 0.000009 - momentum: 0.000000
|
186 |
+
2023-10-23 15:55:55,016 epoch 8 - iter 65/138 - loss 0.03031141 - time (sec): 3.76 - samples/sec: 2962.17 - lr: 0.000009 - momentum: 0.000000
|
187 |
+
2023-10-23 15:55:55,781 epoch 8 - iter 78/138 - loss 0.02709042 - time (sec): 4.52 - samples/sec: 2964.19 - lr: 0.000008 - momentum: 0.000000
|
188 |
+
2023-10-23 15:55:56,513 epoch 8 - iter 91/138 - loss 0.02482129 - time (sec): 5.25 - samples/sec: 2943.89 - lr: 0.000008 - momentum: 0.000000
|
189 |
+
2023-10-23 15:55:57,244 epoch 8 - iter 104/138 - loss 0.02348331 - time (sec): 5.98 - samples/sec: 2909.14 - lr: 0.000008 - momentum: 0.000000
|
190 |
+
2023-10-23 15:55:58,010 epoch 8 - iter 117/138 - loss 0.02455497 - time (sec): 6.75 - samples/sec: 2883.47 - lr: 0.000007 - momentum: 0.000000
|
191 |
+
2023-10-23 15:55:58,754 epoch 8 - iter 130/138 - loss 0.02442744 - time (sec): 7.49 - samples/sec: 2877.71 - lr: 0.000007 - momentum: 0.000000
|
192 |
+
2023-10-23 15:55:59,224 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-23 15:55:59,224 EPOCH 8 done: loss 0.0243 - lr: 0.000007
|
194 |
+
2023-10-23 15:55:59,776 DEV : loss 0.14874805510044098 - f1-score (micro avg) 0.8948
|
195 |
+
2023-10-23 15:55:59,782 saving best model
|
196 |
+
2023-10-23 15:56:00,334 ----------------------------------------------------------------------------------------------------
|
197 |
+
2023-10-23 15:56:01,062 epoch 9 - iter 13/138 - loss 0.01544187 - time (sec): 0.72 - samples/sec: 3068.12 - lr: 0.000006 - momentum: 0.000000
|
198 |
+
2023-10-23 15:56:01,793 epoch 9 - iter 26/138 - loss 0.01943197 - time (sec): 1.45 - samples/sec: 2962.08 - lr: 0.000006 - momentum: 0.000000
|
199 |
+
2023-10-23 15:56:02,529 epoch 9 - iter 39/138 - loss 0.02702448 - time (sec): 2.19 - samples/sec: 3028.97 - lr: 0.000006 - momentum: 0.000000
|
200 |
+
2023-10-23 15:56:03,253 epoch 9 - iter 52/138 - loss 0.02759916 - time (sec): 2.91 - samples/sec: 2961.00 - lr: 0.000005 - momentum: 0.000000
|
201 |
+
2023-10-23 15:56:03,988 epoch 9 - iter 65/138 - loss 0.02404425 - time (sec): 3.65 - samples/sec: 2930.40 - lr: 0.000005 - momentum: 0.000000
|
202 |
+
2023-10-23 15:56:04,729 epoch 9 - iter 78/138 - loss 0.01987204 - time (sec): 4.39 - samples/sec: 3004.47 - lr: 0.000005 - momentum: 0.000000
|
203 |
+
2023-10-23 15:56:05,471 epoch 9 - iter 91/138 - loss 0.01814794 - time (sec): 5.13 - samples/sec: 2981.58 - lr: 0.000005 - momentum: 0.000000
|
204 |
+
2023-10-23 15:56:06,204 epoch 9 - iter 104/138 - loss 0.01732655 - time (sec): 5.86 - samples/sec: 2973.69 - lr: 0.000004 - momentum: 0.000000
|
205 |
+
2023-10-23 15:56:06,931 epoch 9 - iter 117/138 - loss 0.01633533 - time (sec): 6.59 - samples/sec: 2991.47 - lr: 0.000004 - momentum: 0.000000
|
206 |
+
2023-10-23 15:56:07,675 epoch 9 - iter 130/138 - loss 0.01746274 - time (sec): 7.33 - samples/sec: 2956.10 - lr: 0.000004 - momentum: 0.000000
|
207 |
+
2023-10-23 15:56:08,128 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-23 15:56:08,129 EPOCH 9 done: loss 0.0179 - lr: 0.000004
|
209 |
+
2023-10-23 15:56:08,663 DEV : loss 0.1484120488166809 - f1-score (micro avg) 0.8852
|
210 |
+
2023-10-23 15:56:08,669 ----------------------------------------------------------------------------------------------------
|
211 |
+
2023-10-23 15:56:09,391 epoch 10 - iter 13/138 - loss 0.02130054 - time (sec): 0.72 - samples/sec: 2830.96 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-23 15:56:10,108 epoch 10 - iter 26/138 - loss 0.01334521 - time (sec): 1.44 - samples/sec: 2911.14 - lr: 0.000003 - momentum: 0.000000
|
213 |
+
2023-10-23 15:56:10,826 epoch 10 - iter 39/138 - loss 0.01106197 - time (sec): 2.16 - samples/sec: 2984.20 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-23 15:56:11,576 epoch 10 - iter 52/138 - loss 0.00961286 - time (sec): 2.91 - samples/sec: 3018.09 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2023-10-23 15:56:12,281 epoch 10 - iter 65/138 - loss 0.00864498 - time (sec): 3.61 - samples/sec: 2954.18 - lr: 0.000002 - momentum: 0.000000
|
216 |
+
2023-10-23 15:56:13,017 epoch 10 - iter 78/138 - loss 0.01211412 - time (sec): 4.35 - samples/sec: 2938.79 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-23 15:56:13,741 epoch 10 - iter 91/138 - loss 0.01154617 - time (sec): 5.07 - samples/sec: 2914.28 - lr: 0.000001 - momentum: 0.000000
|
218 |
+
2023-10-23 15:56:14,451 epoch 10 - iter 104/138 - loss 0.01059741 - time (sec): 5.78 - samples/sec: 2936.14 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-23 15:56:15,177 epoch 10 - iter 117/138 - loss 0.01141697 - time (sec): 6.51 - samples/sec: 2935.76 - lr: 0.000001 - momentum: 0.000000
|
220 |
+
2023-10-23 15:56:15,924 epoch 10 - iter 130/138 - loss 0.01581859 - time (sec): 7.25 - samples/sec: 2959.38 - lr: 0.000000 - momentum: 0.000000
|
221 |
+
2023-10-23 15:56:16,375 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-23 15:56:16,375 EPOCH 10 done: loss 0.0156 - lr: 0.000000
|
223 |
+
2023-10-23 15:56:16,904 DEV : loss 0.14890803396701813 - f1-score (micro avg) 0.8918
|
224 |
+
2023-10-23 15:56:17,307 ----------------------------------------------------------------------------------------------------
|
225 |
+
2023-10-23 15:56:17,308 Loading model from best epoch ...
|
226 |
+
2023-10-23 15:56:18,949 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
|
227 |
+
2023-10-23 15:56:19,626
|
228 |
+
Results:
|
229 |
+
- F-score (micro) 0.9026
|
230 |
+
- F-score (macro) 0.8039
|
231 |
+
- Accuracy 0.8265
|
232 |
+
|
233 |
+
By class:
|
234 |
+
precision recall f1-score support
|
235 |
+
|
236 |
+
scope 0.8827 0.8977 0.8901 176
|
237 |
+
pers 0.9612 0.9688 0.9650 128
|
238 |
+
work 0.8676 0.7973 0.8310 74
|
239 |
+
object 1.0000 0.5000 0.6667 2
|
240 |
+
loc 1.0000 0.5000 0.6667 2
|
241 |
+
|
242 |
+
micro avg 0.9074 0.8979 0.9026 382
|
243 |
+
macro avg 0.9423 0.7328 0.8039 382
|
244 |
+
weighted avg 0.9073 0.8979 0.9014 382
|
245 |
+
|
246 |
+
2023-10-23 15:56:19,626 ----------------------------------------------------------------------------------------------------
|