File size: 24,022 Bytes
20910d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-17 08:39:39,345 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:39,346 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 08:39:39,346 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:39,346 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-17 08:39:39,346 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:39,346 Train:  1100 sentences
2023-10-17 08:39:39,346         (train_with_dev=False, train_with_test=False)
2023-10-17 08:39:39,347 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:39,347 Training Params:
2023-10-17 08:39:39,347  - learning_rate: "5e-05" 
2023-10-17 08:39:39,347  - mini_batch_size: "4"
2023-10-17 08:39:39,347  - max_epochs: "10"
2023-10-17 08:39:39,347  - shuffle: "True"
2023-10-17 08:39:39,347 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:39,347 Plugins:
2023-10-17 08:39:39,347  - TensorboardLogger
2023-10-17 08:39:39,347  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 08:39:39,347 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:39,347 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 08:39:39,347  - metric: "('micro avg', 'f1-score')"
2023-10-17 08:39:39,347 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:39,347 Computation:
2023-10-17 08:39:39,347  - compute on device: cuda:0
2023-10-17 08:39:39,347  - embedding storage: none
2023-10-17 08:39:39,347 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:39,347 Model training base path: "hmbench-ajmc/de-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-17 08:39:39,347 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:39,347 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:39,347 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 08:39:40,651 epoch 1 - iter 27/275 - loss 4.03878656 - time (sec): 1.30 - samples/sec: 1602.15 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:39:41,984 epoch 1 - iter 54/275 - loss 3.09313257 - time (sec): 2.64 - samples/sec: 1652.71 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:39:43,312 epoch 1 - iter 81/275 - loss 2.32201658 - time (sec): 3.96 - samples/sec: 1708.97 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:39:44,621 epoch 1 - iter 108/275 - loss 1.96172135 - time (sec): 5.27 - samples/sec: 1660.29 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:39:45,831 epoch 1 - iter 135/275 - loss 1.65705331 - time (sec): 6.48 - samples/sec: 1707.48 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:39:47,070 epoch 1 - iter 162/275 - loss 1.43741272 - time (sec): 7.72 - samples/sec: 1732.13 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:39:48,277 epoch 1 - iter 189/275 - loss 1.28970992 - time (sec): 8.93 - samples/sec: 1737.39 - lr: 0.000034 - momentum: 0.000000
2023-10-17 08:39:49,497 epoch 1 - iter 216/275 - loss 1.16239932 - time (sec): 10.15 - samples/sec: 1750.43 - lr: 0.000039 - momentum: 0.000000
2023-10-17 08:39:50,739 epoch 1 - iter 243/275 - loss 1.05732942 - time (sec): 11.39 - samples/sec: 1767.15 - lr: 0.000044 - momentum: 0.000000
2023-10-17 08:39:51,981 epoch 1 - iter 270/275 - loss 0.97265547 - time (sec): 12.63 - samples/sec: 1772.94 - lr: 0.000049 - momentum: 0.000000
2023-10-17 08:39:52,200 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:52,200 EPOCH 1 done: loss 0.9602 - lr: 0.000049
2023-10-17 08:39:52,734 DEV : loss 0.18448342382907867 - f1-score (micro avg)  0.7457
2023-10-17 08:39:52,738 saving best model
2023-10-17 08:39:53,085 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:54,298 epoch 2 - iter 27/275 - loss 0.27765461 - time (sec): 1.21 - samples/sec: 1847.98 - lr: 0.000049 - momentum: 0.000000
2023-10-17 08:39:55,529 epoch 2 - iter 54/275 - loss 0.20491030 - time (sec): 2.44 - samples/sec: 1847.56 - lr: 0.000049 - momentum: 0.000000
2023-10-17 08:39:56,740 epoch 2 - iter 81/275 - loss 0.18857691 - time (sec): 3.65 - samples/sec: 1881.68 - lr: 0.000048 - momentum: 0.000000
2023-10-17 08:39:57,971 epoch 2 - iter 108/275 - loss 0.18384314 - time (sec): 4.88 - samples/sec: 1863.64 - lr: 0.000048 - momentum: 0.000000
2023-10-17 08:39:59,237 epoch 2 - iter 135/275 - loss 0.19785182 - time (sec): 6.15 - samples/sec: 1883.70 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:40:00,460 epoch 2 - iter 162/275 - loss 0.18989803 - time (sec): 7.37 - samples/sec: 1867.37 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:40:01,679 epoch 2 - iter 189/275 - loss 0.17923154 - time (sec): 8.59 - samples/sec: 1851.17 - lr: 0.000046 - momentum: 0.000000
2023-10-17 08:40:02,886 epoch 2 - iter 216/275 - loss 0.16990514 - time (sec): 9.80 - samples/sec: 1844.09 - lr: 0.000046 - momentum: 0.000000
2023-10-17 08:40:04,108 epoch 2 - iter 243/275 - loss 0.16846483 - time (sec): 11.02 - samples/sec: 1828.04 - lr: 0.000045 - momentum: 0.000000
2023-10-17 08:40:05,323 epoch 2 - iter 270/275 - loss 0.16677599 - time (sec): 12.24 - samples/sec: 1833.14 - lr: 0.000045 - momentum: 0.000000
2023-10-17 08:40:05,547 ----------------------------------------------------------------------------------------------------
2023-10-17 08:40:05,547 EPOCH 2 done: loss 0.1650 - lr: 0.000045
2023-10-17 08:40:06,199 DEV : loss 0.18307897448539734 - f1-score (micro avg)  0.7929
2023-10-17 08:40:06,204 saving best model
2023-10-17 08:40:06,658 ----------------------------------------------------------------------------------------------------
2023-10-17 08:40:07,957 epoch 3 - iter 27/275 - loss 0.10069768 - time (sec): 1.30 - samples/sec: 1916.69 - lr: 0.000044 - momentum: 0.000000
2023-10-17 08:40:09,194 epoch 3 - iter 54/275 - loss 0.10050973 - time (sec): 2.53 - samples/sec: 1883.93 - lr: 0.000043 - momentum: 0.000000
2023-10-17 08:40:10,426 epoch 3 - iter 81/275 - loss 0.09155482 - time (sec): 3.77 - samples/sec: 1866.60 - lr: 0.000043 - momentum: 0.000000
2023-10-17 08:40:11,659 epoch 3 - iter 108/275 - loss 0.08904290 - time (sec): 5.00 - samples/sec: 1897.14 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:40:12,873 epoch 3 - iter 135/275 - loss 0.08844808 - time (sec): 6.21 - samples/sec: 1846.47 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:40:14,099 epoch 3 - iter 162/275 - loss 0.09007275 - time (sec): 7.44 - samples/sec: 1837.24 - lr: 0.000041 - momentum: 0.000000
2023-10-17 08:40:15,314 epoch 3 - iter 189/275 - loss 0.09894026 - time (sec): 8.65 - samples/sec: 1838.92 - lr: 0.000041 - momentum: 0.000000
2023-10-17 08:40:16,541 epoch 3 - iter 216/275 - loss 0.10190647 - time (sec): 9.88 - samples/sec: 1840.60 - lr: 0.000040 - momentum: 0.000000
2023-10-17 08:40:17,747 epoch 3 - iter 243/275 - loss 0.10769110 - time (sec): 11.09 - samples/sec: 1835.25 - lr: 0.000040 - momentum: 0.000000
2023-10-17 08:40:18,964 epoch 3 - iter 270/275 - loss 0.10706840 - time (sec): 12.30 - samples/sec: 1823.91 - lr: 0.000039 - momentum: 0.000000
2023-10-17 08:40:19,187 ----------------------------------------------------------------------------------------------------
2023-10-17 08:40:19,188 EPOCH 3 done: loss 0.1065 - lr: 0.000039
2023-10-17 08:40:19,998 DEV : loss 0.18310178816318512 - f1-score (micro avg)  0.8514
2023-10-17 08:40:20,002 saving best model
2023-10-17 08:40:20,437 ----------------------------------------------------------------------------------------------------
2023-10-17 08:40:21,645 epoch 4 - iter 27/275 - loss 0.05756256 - time (sec): 1.21 - samples/sec: 1794.76 - lr: 0.000038 - momentum: 0.000000
2023-10-17 08:40:22,858 epoch 4 - iter 54/275 - loss 0.05243097 - time (sec): 2.42 - samples/sec: 1833.72 - lr: 0.000038 - momentum: 0.000000
2023-10-17 08:40:24,061 epoch 4 - iter 81/275 - loss 0.05875408 - time (sec): 3.62 - samples/sec: 1831.26 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:40:25,273 epoch 4 - iter 108/275 - loss 0.05543076 - time (sec): 4.83 - samples/sec: 1783.41 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:40:26,480 epoch 4 - iter 135/275 - loss 0.06963521 - time (sec): 6.04 - samples/sec: 1806.84 - lr: 0.000036 - momentum: 0.000000
2023-10-17 08:40:27,712 epoch 4 - iter 162/275 - loss 0.07078516 - time (sec): 7.27 - samples/sec: 1816.65 - lr: 0.000036 - momentum: 0.000000
2023-10-17 08:40:28,939 epoch 4 - iter 189/275 - loss 0.07629535 - time (sec): 8.50 - samples/sec: 1793.65 - lr: 0.000035 - momentum: 0.000000
2023-10-17 08:40:30,163 epoch 4 - iter 216/275 - loss 0.08775086 - time (sec): 9.72 - samples/sec: 1822.76 - lr: 0.000035 - momentum: 0.000000
2023-10-17 08:40:31,360 epoch 4 - iter 243/275 - loss 0.08837665 - time (sec): 10.92 - samples/sec: 1825.54 - lr: 0.000034 - momentum: 0.000000
2023-10-17 08:40:32,593 epoch 4 - iter 270/275 - loss 0.08667772 - time (sec): 12.15 - samples/sec: 1836.66 - lr: 0.000034 - momentum: 0.000000
2023-10-17 08:40:32,816 ----------------------------------------------------------------------------------------------------
2023-10-17 08:40:32,816 EPOCH 4 done: loss 0.0867 - lr: 0.000034
2023-10-17 08:40:33,475 DEV : loss 0.21343372762203217 - f1-score (micro avg)  0.8759
2023-10-17 08:40:33,479 saving best model
2023-10-17 08:40:33,906 ----------------------------------------------------------------------------------------------------
2023-10-17 08:40:35,101 epoch 5 - iter 27/275 - loss 0.09904212 - time (sec): 1.19 - samples/sec: 1928.97 - lr: 0.000033 - momentum: 0.000000
2023-10-17 08:40:36,312 epoch 5 - iter 54/275 - loss 0.08332440 - time (sec): 2.40 - samples/sec: 1929.05 - lr: 0.000032 - momentum: 0.000000
2023-10-17 08:40:37,498 epoch 5 - iter 81/275 - loss 0.07371610 - time (sec): 3.59 - samples/sec: 1906.32 - lr: 0.000032 - momentum: 0.000000
2023-10-17 08:40:38,715 epoch 5 - iter 108/275 - loss 0.08587081 - time (sec): 4.81 - samples/sec: 1876.77 - lr: 0.000031 - momentum: 0.000000
2023-10-17 08:40:39,919 epoch 5 - iter 135/275 - loss 0.08650298 - time (sec): 6.01 - samples/sec: 1876.23 - lr: 0.000031 - momentum: 0.000000
2023-10-17 08:40:41,117 epoch 5 - iter 162/275 - loss 0.08560863 - time (sec): 7.21 - samples/sec: 1867.28 - lr: 0.000030 - momentum: 0.000000
2023-10-17 08:40:42,352 epoch 5 - iter 189/275 - loss 0.08186266 - time (sec): 8.44 - samples/sec: 1869.53 - lr: 0.000030 - momentum: 0.000000
2023-10-17 08:40:43,582 epoch 5 - iter 216/275 - loss 0.07453600 - time (sec): 9.67 - samples/sec: 1870.31 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:40:44,819 epoch 5 - iter 243/275 - loss 0.07028006 - time (sec): 10.91 - samples/sec: 1859.96 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:40:46,043 epoch 5 - iter 270/275 - loss 0.06854325 - time (sec): 12.14 - samples/sec: 1843.18 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:40:46,271 ----------------------------------------------------------------------------------------------------
2023-10-17 08:40:46,271 EPOCH 5 done: loss 0.0673 - lr: 0.000028
2023-10-17 08:40:46,938 DEV : loss 0.20947176218032837 - f1-score (micro avg)  0.8504
2023-10-17 08:40:46,943 ----------------------------------------------------------------------------------------------------
2023-10-17 08:40:48,187 epoch 6 - iter 27/275 - loss 0.05511466 - time (sec): 1.24 - samples/sec: 1842.84 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:40:49,440 epoch 6 - iter 54/275 - loss 0.05118589 - time (sec): 2.50 - samples/sec: 1787.99 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:40:50,650 epoch 6 - iter 81/275 - loss 0.05692708 - time (sec): 3.71 - samples/sec: 1763.66 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:40:51,852 epoch 6 - iter 108/275 - loss 0.06210658 - time (sec): 4.91 - samples/sec: 1755.23 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:40:53,063 epoch 6 - iter 135/275 - loss 0.05927054 - time (sec): 6.12 - samples/sec: 1813.61 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:40:54,220 epoch 6 - iter 162/275 - loss 0.05347616 - time (sec): 7.28 - samples/sec: 1801.60 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:40:55,399 epoch 6 - iter 189/275 - loss 0.05304045 - time (sec): 8.46 - samples/sec: 1844.48 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:40:56,562 epoch 6 - iter 216/275 - loss 0.05186256 - time (sec): 9.62 - samples/sec: 1849.76 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:40:57,712 epoch 6 - iter 243/275 - loss 0.04991913 - time (sec): 10.77 - samples/sec: 1848.15 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:40:58,869 epoch 6 - iter 270/275 - loss 0.04731578 - time (sec): 11.93 - samples/sec: 1866.98 - lr: 0.000022 - momentum: 0.000000
2023-10-17 08:40:59,090 ----------------------------------------------------------------------------------------------------
2023-10-17 08:40:59,090 EPOCH 6 done: loss 0.0469 - lr: 0.000022
2023-10-17 08:40:59,729 DEV : loss 0.17257489264011383 - f1-score (micro avg)  0.8764
2023-10-17 08:40:59,734 saving best model
2023-10-17 08:41:00,182 ----------------------------------------------------------------------------------------------------
2023-10-17 08:41:01,421 epoch 7 - iter 27/275 - loss 0.01858912 - time (sec): 1.24 - samples/sec: 1872.12 - lr: 0.000022 - momentum: 0.000000
2023-10-17 08:41:02,633 epoch 7 - iter 54/275 - loss 0.01466161 - time (sec): 2.45 - samples/sec: 1827.37 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:41:03,852 epoch 7 - iter 81/275 - loss 0.01630909 - time (sec): 3.67 - samples/sec: 1800.60 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:41:05,148 epoch 7 - iter 108/275 - loss 0.02794978 - time (sec): 4.96 - samples/sec: 1740.67 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:41:06,405 epoch 7 - iter 135/275 - loss 0.02556503 - time (sec): 6.22 - samples/sec: 1794.75 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:41:07,676 epoch 7 - iter 162/275 - loss 0.03038199 - time (sec): 7.49 - samples/sec: 1806.56 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:41:08,890 epoch 7 - iter 189/275 - loss 0.03380410 - time (sec): 8.71 - samples/sec: 1799.57 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:41:10,121 epoch 7 - iter 216/275 - loss 0.03086095 - time (sec): 9.94 - samples/sec: 1810.37 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:41:11,366 epoch 7 - iter 243/275 - loss 0.03220375 - time (sec): 11.18 - samples/sec: 1806.21 - lr: 0.000017 - momentum: 0.000000
2023-10-17 08:41:12,567 epoch 7 - iter 270/275 - loss 0.03117750 - time (sec): 12.38 - samples/sec: 1815.30 - lr: 0.000017 - momentum: 0.000000
2023-10-17 08:41:12,788 ----------------------------------------------------------------------------------------------------
2023-10-17 08:41:12,788 EPOCH 7 done: loss 0.0328 - lr: 0.000017
2023-10-17 08:41:13,421 DEV : loss 0.16961951553821564 - f1-score (micro avg)  0.8696
2023-10-17 08:41:13,426 ----------------------------------------------------------------------------------------------------
2023-10-17 08:41:14,692 epoch 8 - iter 27/275 - loss 0.03404871 - time (sec): 1.26 - samples/sec: 1755.31 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:41:15,915 epoch 8 - iter 54/275 - loss 0.04007446 - time (sec): 2.49 - samples/sec: 1762.18 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:41:17,187 epoch 8 - iter 81/275 - loss 0.03058524 - time (sec): 3.76 - samples/sec: 1822.23 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:41:18,407 epoch 8 - iter 108/275 - loss 0.03511864 - time (sec): 4.98 - samples/sec: 1835.28 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:41:19,619 epoch 8 - iter 135/275 - loss 0.03051247 - time (sec): 6.19 - samples/sec: 1832.90 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:41:20,817 epoch 8 - iter 162/275 - loss 0.02693145 - time (sec): 7.39 - samples/sec: 1798.00 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:41:22,089 epoch 8 - iter 189/275 - loss 0.02624564 - time (sec): 8.66 - samples/sec: 1798.56 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:41:23,318 epoch 8 - iter 216/275 - loss 0.02675046 - time (sec): 9.89 - samples/sec: 1803.44 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:41:24,550 epoch 8 - iter 243/275 - loss 0.02456897 - time (sec): 11.12 - samples/sec: 1803.77 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:41:25,712 epoch 8 - iter 270/275 - loss 0.02792934 - time (sec): 12.29 - samples/sec: 1822.32 - lr: 0.000011 - momentum: 0.000000
2023-10-17 08:41:25,926 ----------------------------------------------------------------------------------------------------
2023-10-17 08:41:25,926 EPOCH 8 done: loss 0.0275 - lr: 0.000011
2023-10-17 08:41:26,560 DEV : loss 0.18767307698726654 - f1-score (micro avg)  0.8819
2023-10-17 08:41:26,565 saving best model
2023-10-17 08:41:26,999 ----------------------------------------------------------------------------------------------------
2023-10-17 08:41:28,308 epoch 9 - iter 27/275 - loss 0.01847685 - time (sec): 1.31 - samples/sec: 1706.16 - lr: 0.000011 - momentum: 0.000000
2023-10-17 08:41:29,553 epoch 9 - iter 54/275 - loss 0.02177958 - time (sec): 2.55 - samples/sec: 1832.70 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:41:30,790 epoch 9 - iter 81/275 - loss 0.01693967 - time (sec): 3.79 - samples/sec: 1789.02 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:41:32,050 epoch 9 - iter 108/275 - loss 0.01773225 - time (sec): 5.05 - samples/sec: 1776.39 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:41:33,286 epoch 9 - iter 135/275 - loss 0.01737827 - time (sec): 6.28 - samples/sec: 1794.29 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:41:34,507 epoch 9 - iter 162/275 - loss 0.01537384 - time (sec): 7.50 - samples/sec: 1796.61 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:41:35,743 epoch 9 - iter 189/275 - loss 0.01914939 - time (sec): 8.74 - samples/sec: 1794.42 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:41:36,975 epoch 9 - iter 216/275 - loss 0.01928300 - time (sec): 9.97 - samples/sec: 1800.75 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:41:38,189 epoch 9 - iter 243/275 - loss 0.01786580 - time (sec): 11.19 - samples/sec: 1788.11 - lr: 0.000006 - momentum: 0.000000
2023-10-17 08:41:39,426 epoch 9 - iter 270/275 - loss 0.01731168 - time (sec): 12.42 - samples/sec: 1796.45 - lr: 0.000006 - momentum: 0.000000
2023-10-17 08:41:39,653 ----------------------------------------------------------------------------------------------------
2023-10-17 08:41:39,653 EPOCH 9 done: loss 0.0170 - lr: 0.000006
2023-10-17 08:41:40,301 DEV : loss 0.1904018521308899 - f1-score (micro avg)  0.8759
2023-10-17 08:41:40,306 ----------------------------------------------------------------------------------------------------
2023-10-17 08:41:41,562 epoch 10 - iter 27/275 - loss 0.03813907 - time (sec): 1.25 - samples/sec: 2061.13 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:41:42,792 epoch 10 - iter 54/275 - loss 0.02883733 - time (sec): 2.48 - samples/sec: 2002.02 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:41:44,014 epoch 10 - iter 81/275 - loss 0.02220392 - time (sec): 3.71 - samples/sec: 1992.70 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:41:45,249 epoch 10 - iter 108/275 - loss 0.02022173 - time (sec): 4.94 - samples/sec: 1911.67 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:41:46,451 epoch 10 - iter 135/275 - loss 0.01751670 - time (sec): 6.14 - samples/sec: 1884.10 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:41:47,677 epoch 10 - iter 162/275 - loss 0.01868292 - time (sec): 7.37 - samples/sec: 1861.62 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:41:48,901 epoch 10 - iter 189/275 - loss 0.01721044 - time (sec): 8.59 - samples/sec: 1841.39 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:41:50,124 epoch 10 - iter 216/275 - loss 0.01701337 - time (sec): 9.82 - samples/sec: 1826.79 - lr: 0.000001 - momentum: 0.000000
2023-10-17 08:41:51,282 epoch 10 - iter 243/275 - loss 0.01725403 - time (sec): 10.97 - samples/sec: 1844.54 - lr: 0.000001 - momentum: 0.000000
2023-10-17 08:41:52,480 epoch 10 - iter 270/275 - loss 0.01637470 - time (sec): 12.17 - samples/sec: 1837.19 - lr: 0.000000 - momentum: 0.000000
2023-10-17 08:41:52,705 ----------------------------------------------------------------------------------------------------
2023-10-17 08:41:52,705 EPOCH 10 done: loss 0.0164 - lr: 0.000000
2023-10-17 08:41:53,342 DEV : loss 0.1948593109846115 - f1-score (micro avg)  0.8703
2023-10-17 08:41:53,711 ----------------------------------------------------------------------------------------------------
2023-10-17 08:41:53,712 Loading model from best epoch ...
2023-10-17 08:41:55,054 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 08:41:55,885 
Results:
- F-score (micro) 0.8924
- F-score (macro) 0.8645
- Accuracy 0.8175

By class:
              precision    recall  f1-score   support

       scope     0.8895    0.8693    0.8793       176
        pers     0.9754    0.9297    0.9520       128
        work     0.8243    0.8243    0.8243        74
      object     1.0000    1.0000    1.0000         2
         loc     1.0000    0.5000    0.6667         2

   micro avg     0.9057    0.8796    0.8924       382
   macro avg     0.9379    0.8247    0.8645       382
weighted avg     0.9068    0.8796    0.8925       382

2023-10-17 08:41:55,885 ----------------------------------------------------------------------------------------------------