File size: 24,065 Bytes
f57246c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
2023-10-17 08:58:17,407 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:17,408 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 08:58:17,408 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:17,408 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-17 08:58:17,408 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:17,408 Train:  1100 sentences
2023-10-17 08:58:17,408         (train_with_dev=False, train_with_test=False)
2023-10-17 08:58:17,408 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:17,408 Training Params:
2023-10-17 08:58:17,408  - learning_rate: "5e-05" 
2023-10-17 08:58:17,408  - mini_batch_size: "4"
2023-10-17 08:58:17,408  - max_epochs: "10"
2023-10-17 08:58:17,408  - shuffle: "True"
2023-10-17 08:58:17,408 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:17,408 Plugins:
2023-10-17 08:58:17,409  - TensorboardLogger
2023-10-17 08:58:17,409  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 08:58:17,409 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:17,409 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 08:58:17,409  - metric: "('micro avg', 'f1-score')"
2023-10-17 08:58:17,409 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:17,409 Computation:
2023-10-17 08:58:17,409  - compute on device: cuda:0
2023-10-17 08:58:17,409  - embedding storage: none
2023-10-17 08:58:17,409 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:17,409 Model training base path: "hmbench-ajmc/de-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-17 08:58:17,409 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:17,409 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:17,409 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 08:58:18,605 epoch 1 - iter 27/275 - loss 4.07866641 - time (sec): 1.19 - samples/sec: 1976.27 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:58:19,775 epoch 1 - iter 54/275 - loss 3.29122762 - time (sec): 2.37 - samples/sec: 1984.04 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:58:20,926 epoch 1 - iter 81/275 - loss 2.54691304 - time (sec): 3.52 - samples/sec: 1958.01 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:58:22,121 epoch 1 - iter 108/275 - loss 2.12670496 - time (sec): 4.71 - samples/sec: 1912.47 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:58:23,343 epoch 1 - iter 135/275 - loss 1.79077335 - time (sec): 5.93 - samples/sec: 1917.19 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:58:24,549 epoch 1 - iter 162/275 - loss 1.55375745 - time (sec): 7.14 - samples/sec: 1907.76 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:58:25,780 epoch 1 - iter 189/275 - loss 1.37607396 - time (sec): 8.37 - samples/sec: 1919.35 - lr: 0.000034 - momentum: 0.000000
2023-10-17 08:58:27,007 epoch 1 - iter 216/275 - loss 1.24831931 - time (sec): 9.60 - samples/sec: 1917.67 - lr: 0.000039 - momentum: 0.000000
2023-10-17 08:58:28,229 epoch 1 - iter 243/275 - loss 1.15443524 - time (sec): 10.82 - samples/sec: 1879.47 - lr: 0.000044 - momentum: 0.000000
2023-10-17 08:58:29,450 epoch 1 - iter 270/275 - loss 1.07150887 - time (sec): 12.04 - samples/sec: 1855.75 - lr: 0.000049 - momentum: 0.000000
2023-10-17 08:58:29,669 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:29,669 EPOCH 1 done: loss 1.0540 - lr: 0.000049
2023-10-17 08:58:30,219 DEV : loss 0.21305261552333832 - f1-score (micro avg)  0.689
2023-10-17 08:58:30,225 saving best model
2023-10-17 08:58:30,589 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:31,803 epoch 2 - iter 27/275 - loss 0.17379043 - time (sec): 1.21 - samples/sec: 1836.45 - lr: 0.000049 - momentum: 0.000000
2023-10-17 08:58:33,023 epoch 2 - iter 54/275 - loss 0.20261401 - time (sec): 2.43 - samples/sec: 1731.08 - lr: 0.000049 - momentum: 0.000000
2023-10-17 08:58:34,261 epoch 2 - iter 81/275 - loss 0.18846942 - time (sec): 3.67 - samples/sec: 1771.69 - lr: 0.000048 - momentum: 0.000000
2023-10-17 08:58:35,484 epoch 2 - iter 108/275 - loss 0.20079845 - time (sec): 4.89 - samples/sec: 1774.39 - lr: 0.000048 - momentum: 0.000000
2023-10-17 08:58:36,710 epoch 2 - iter 135/275 - loss 0.19197758 - time (sec): 6.12 - samples/sec: 1762.60 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:58:37,914 epoch 2 - iter 162/275 - loss 0.18863668 - time (sec): 7.32 - samples/sec: 1773.15 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:58:39,138 epoch 2 - iter 189/275 - loss 0.18366584 - time (sec): 8.55 - samples/sec: 1781.81 - lr: 0.000046 - momentum: 0.000000
2023-10-17 08:58:40,371 epoch 2 - iter 216/275 - loss 0.17800713 - time (sec): 9.78 - samples/sec: 1797.98 - lr: 0.000046 - momentum: 0.000000
2023-10-17 08:58:41,611 epoch 2 - iter 243/275 - loss 0.17153577 - time (sec): 11.02 - samples/sec: 1811.35 - lr: 0.000045 - momentum: 0.000000
2023-10-17 08:58:42,818 epoch 2 - iter 270/275 - loss 0.17760855 - time (sec): 12.23 - samples/sec: 1826.07 - lr: 0.000045 - momentum: 0.000000
2023-10-17 08:58:43,040 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:43,040 EPOCH 2 done: loss 0.1758 - lr: 0.000045
2023-10-17 08:58:43,808 DEV : loss 0.18843930959701538 - f1-score (micro avg)  0.7895
2023-10-17 08:58:43,815 saving best model
2023-10-17 08:58:44,366 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:45,831 epoch 3 - iter 27/275 - loss 0.11796556 - time (sec): 1.46 - samples/sec: 1664.07 - lr: 0.000044 - momentum: 0.000000
2023-10-17 08:58:47,270 epoch 3 - iter 54/275 - loss 0.11204503 - time (sec): 2.90 - samples/sec: 1569.24 - lr: 0.000043 - momentum: 0.000000
2023-10-17 08:58:48,521 epoch 3 - iter 81/275 - loss 0.10541729 - time (sec): 4.15 - samples/sec: 1678.87 - lr: 0.000043 - momentum: 0.000000
2023-10-17 08:58:49,769 epoch 3 - iter 108/275 - loss 0.09944435 - time (sec): 5.40 - samples/sec: 1682.28 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:58:51,020 epoch 3 - iter 135/275 - loss 0.08997580 - time (sec): 6.65 - samples/sec: 1716.47 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:58:52,209 epoch 3 - iter 162/275 - loss 0.09204905 - time (sec): 7.84 - samples/sec: 1716.14 - lr: 0.000041 - momentum: 0.000000
2023-10-17 08:58:53,645 epoch 3 - iter 189/275 - loss 0.09910161 - time (sec): 9.28 - samples/sec: 1684.31 - lr: 0.000041 - momentum: 0.000000
2023-10-17 08:58:54,860 epoch 3 - iter 216/275 - loss 0.10368806 - time (sec): 10.49 - samples/sec: 1711.55 - lr: 0.000040 - momentum: 0.000000
2023-10-17 08:58:56,133 epoch 3 - iter 243/275 - loss 0.10108127 - time (sec): 11.77 - samples/sec: 1727.07 - lr: 0.000040 - momentum: 0.000000
2023-10-17 08:58:57,332 epoch 3 - iter 270/275 - loss 0.10499294 - time (sec): 12.96 - samples/sec: 1727.39 - lr: 0.000039 - momentum: 0.000000
2023-10-17 08:58:57,564 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:57,564 EPOCH 3 done: loss 0.1036 - lr: 0.000039
2023-10-17 08:58:58,201 DEV : loss 0.17471981048583984 - f1-score (micro avg)  0.8381
2023-10-17 08:58:58,206 saving best model
2023-10-17 08:58:58,662 ----------------------------------------------------------------------------------------------------
2023-10-17 08:58:59,945 epoch 4 - iter 27/275 - loss 0.06961920 - time (sec): 1.28 - samples/sec: 1517.71 - lr: 0.000038 - momentum: 0.000000
2023-10-17 08:59:01,182 epoch 4 - iter 54/275 - loss 0.05928687 - time (sec): 2.52 - samples/sec: 1617.38 - lr: 0.000038 - momentum: 0.000000
2023-10-17 08:59:02,416 epoch 4 - iter 81/275 - loss 0.07798742 - time (sec): 3.75 - samples/sec: 1739.45 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:59:03,637 epoch 4 - iter 108/275 - loss 0.07703170 - time (sec): 4.97 - samples/sec: 1778.57 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:59:04,939 epoch 4 - iter 135/275 - loss 0.06995502 - time (sec): 6.27 - samples/sec: 1798.39 - lr: 0.000036 - momentum: 0.000000
2023-10-17 08:59:06,139 epoch 4 - iter 162/275 - loss 0.07538902 - time (sec): 7.47 - samples/sec: 1800.10 - lr: 0.000036 - momentum: 0.000000
2023-10-17 08:59:07,403 epoch 4 - iter 189/275 - loss 0.09041096 - time (sec): 8.74 - samples/sec: 1797.81 - lr: 0.000035 - momentum: 0.000000
2023-10-17 08:59:08,633 epoch 4 - iter 216/275 - loss 0.08712686 - time (sec): 9.97 - samples/sec: 1824.14 - lr: 0.000035 - momentum: 0.000000
2023-10-17 08:59:09,874 epoch 4 - iter 243/275 - loss 0.08979277 - time (sec): 11.21 - samples/sec: 1831.00 - lr: 0.000034 - momentum: 0.000000
2023-10-17 08:59:11,099 epoch 4 - iter 270/275 - loss 0.08447754 - time (sec): 12.43 - samples/sec: 1803.26 - lr: 0.000034 - momentum: 0.000000
2023-10-17 08:59:11,324 ----------------------------------------------------------------------------------------------------
2023-10-17 08:59:11,324 EPOCH 4 done: loss 0.0854 - lr: 0.000034
2023-10-17 08:59:11,991 DEV : loss 0.20809108018875122 - f1-score (micro avg)  0.8396
2023-10-17 08:59:11,998 saving best model
2023-10-17 08:59:12,432 ----------------------------------------------------------------------------------------------------
2023-10-17 08:59:13,700 epoch 5 - iter 27/275 - loss 0.04462372 - time (sec): 1.27 - samples/sec: 1776.94 - lr: 0.000033 - momentum: 0.000000
2023-10-17 08:59:14,965 epoch 5 - iter 54/275 - loss 0.09665540 - time (sec): 2.53 - samples/sec: 1809.57 - lr: 0.000032 - momentum: 0.000000
2023-10-17 08:59:16,195 epoch 5 - iter 81/275 - loss 0.08000189 - time (sec): 3.76 - samples/sec: 1901.41 - lr: 0.000032 - momentum: 0.000000
2023-10-17 08:59:17,441 epoch 5 - iter 108/275 - loss 0.06849516 - time (sec): 5.01 - samples/sec: 1890.98 - lr: 0.000031 - momentum: 0.000000
2023-10-17 08:59:18,647 epoch 5 - iter 135/275 - loss 0.06277789 - time (sec): 6.21 - samples/sec: 1875.02 - lr: 0.000031 - momentum: 0.000000
2023-10-17 08:59:19,862 epoch 5 - iter 162/275 - loss 0.06311559 - time (sec): 7.43 - samples/sec: 1871.34 - lr: 0.000030 - momentum: 0.000000
2023-10-17 08:59:21,067 epoch 5 - iter 189/275 - loss 0.06254311 - time (sec): 8.63 - samples/sec: 1855.50 - lr: 0.000030 - momentum: 0.000000
2023-10-17 08:59:22,325 epoch 5 - iter 216/275 - loss 0.06440827 - time (sec): 9.89 - samples/sec: 1834.23 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:59:23,541 epoch 5 - iter 243/275 - loss 0.06533553 - time (sec): 11.11 - samples/sec: 1812.20 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:59:24,772 epoch 5 - iter 270/275 - loss 0.06177798 - time (sec): 12.34 - samples/sec: 1807.63 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:59:25,003 ----------------------------------------------------------------------------------------------------
2023-10-17 08:59:25,003 EPOCH 5 done: loss 0.0605 - lr: 0.000028
2023-10-17 08:59:25,661 DEV : loss 0.16310758888721466 - f1-score (micro avg)  0.8638
2023-10-17 08:59:25,666 saving best model
2023-10-17 08:59:26,106 ----------------------------------------------------------------------------------------------------
2023-10-17 08:59:27,381 epoch 6 - iter 27/275 - loss 0.05938802 - time (sec): 1.27 - samples/sec: 1761.49 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:59:28,605 epoch 6 - iter 54/275 - loss 0.03521374 - time (sec): 2.49 - samples/sec: 1880.76 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:59:29,907 epoch 6 - iter 81/275 - loss 0.04884466 - time (sec): 3.80 - samples/sec: 1829.45 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:59:31,160 epoch 6 - iter 108/275 - loss 0.05158786 - time (sec): 5.05 - samples/sec: 1783.64 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:59:32,408 epoch 6 - iter 135/275 - loss 0.04511006 - time (sec): 6.30 - samples/sec: 1770.43 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:59:33,652 epoch 6 - iter 162/275 - loss 0.04555781 - time (sec): 7.54 - samples/sec: 1788.09 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:59:34,877 epoch 6 - iter 189/275 - loss 0.04640001 - time (sec): 8.77 - samples/sec: 1811.19 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:59:36,129 epoch 6 - iter 216/275 - loss 0.04597427 - time (sec): 10.02 - samples/sec: 1807.09 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:59:37,371 epoch 6 - iter 243/275 - loss 0.04373227 - time (sec): 11.26 - samples/sec: 1793.75 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:59:38,625 epoch 6 - iter 270/275 - loss 0.04377672 - time (sec): 12.51 - samples/sec: 1790.20 - lr: 0.000022 - momentum: 0.000000
2023-10-17 08:59:38,866 ----------------------------------------------------------------------------------------------------
2023-10-17 08:59:38,866 EPOCH 6 done: loss 0.0436 - lr: 0.000022
2023-10-17 08:59:39,503 DEV : loss 0.18482080101966858 - f1-score (micro avg)  0.8667
2023-10-17 08:59:39,507 saving best model
2023-10-17 08:59:39,942 ----------------------------------------------------------------------------------------------------
2023-10-17 08:59:41,185 epoch 7 - iter 27/275 - loss 0.00375937 - time (sec): 1.24 - samples/sec: 1787.06 - lr: 0.000022 - momentum: 0.000000
2023-10-17 08:59:42,401 epoch 7 - iter 54/275 - loss 0.03130435 - time (sec): 2.46 - samples/sec: 1792.81 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:59:43,658 epoch 7 - iter 81/275 - loss 0.02778327 - time (sec): 3.71 - samples/sec: 1813.60 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:59:44,936 epoch 7 - iter 108/275 - loss 0.02223742 - time (sec): 4.99 - samples/sec: 1784.16 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:59:46,108 epoch 7 - iter 135/275 - loss 0.02443230 - time (sec): 6.16 - samples/sec: 1804.63 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:59:47,286 epoch 7 - iter 162/275 - loss 0.02403903 - time (sec): 7.34 - samples/sec: 1819.87 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:59:48,489 epoch 7 - iter 189/275 - loss 0.02872301 - time (sec): 8.54 - samples/sec: 1812.79 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:59:49,711 epoch 7 - iter 216/275 - loss 0.02738304 - time (sec): 9.77 - samples/sec: 1827.30 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:59:50,937 epoch 7 - iter 243/275 - loss 0.02863521 - time (sec): 10.99 - samples/sec: 1840.26 - lr: 0.000017 - momentum: 0.000000
2023-10-17 08:59:52,153 epoch 7 - iter 270/275 - loss 0.02704741 - time (sec): 12.21 - samples/sec: 1830.73 - lr: 0.000017 - momentum: 0.000000
2023-10-17 08:59:52,375 ----------------------------------------------------------------------------------------------------
2023-10-17 08:59:52,375 EPOCH 7 done: loss 0.0266 - lr: 0.000017
2023-10-17 08:59:53,010 DEV : loss 0.18936654925346375 - f1-score (micro avg)  0.8661
2023-10-17 08:59:53,015 ----------------------------------------------------------------------------------------------------
2023-10-17 08:59:54,241 epoch 8 - iter 27/275 - loss 0.01591955 - time (sec): 1.22 - samples/sec: 1905.76 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:59:55,473 epoch 8 - iter 54/275 - loss 0.01525013 - time (sec): 2.46 - samples/sec: 1931.06 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:59:56,676 epoch 8 - iter 81/275 - loss 0.01576595 - time (sec): 3.66 - samples/sec: 1865.01 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:59:57,880 epoch 8 - iter 108/275 - loss 0.02936768 - time (sec): 4.86 - samples/sec: 1838.25 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:59:59,121 epoch 8 - iter 135/275 - loss 0.02952848 - time (sec): 6.10 - samples/sec: 1823.65 - lr: 0.000014 - momentum: 0.000000
2023-10-17 09:00:00,326 epoch 8 - iter 162/275 - loss 0.02768193 - time (sec): 7.31 - samples/sec: 1838.08 - lr: 0.000014 - momentum: 0.000000
2023-10-17 09:00:01,548 epoch 8 - iter 189/275 - loss 0.02911434 - time (sec): 8.53 - samples/sec: 1827.23 - lr: 0.000013 - momentum: 0.000000
2023-10-17 09:00:02,765 epoch 8 - iter 216/275 - loss 0.02582105 - time (sec): 9.75 - samples/sec: 1824.74 - lr: 0.000012 - momentum: 0.000000
2023-10-17 09:00:04,011 epoch 8 - iter 243/275 - loss 0.02566323 - time (sec): 11.00 - samples/sec: 1839.93 - lr: 0.000012 - momentum: 0.000000
2023-10-17 09:00:05,181 epoch 8 - iter 270/275 - loss 0.02392802 - time (sec): 12.17 - samples/sec: 1849.66 - lr: 0.000011 - momentum: 0.000000
2023-10-17 09:00:05,394 ----------------------------------------------------------------------------------------------------
2023-10-17 09:00:05,394 EPOCH 8 done: loss 0.0236 - lr: 0.000011
2023-10-17 09:00:06,050 DEV : loss 0.19396452605724335 - f1-score (micro avg)  0.8786
2023-10-17 09:00:06,055 saving best model
2023-10-17 09:00:06,500 ----------------------------------------------------------------------------------------------------
2023-10-17 09:00:07,759 epoch 9 - iter 27/275 - loss 0.02131835 - time (sec): 1.26 - samples/sec: 1831.06 - lr: 0.000011 - momentum: 0.000000
2023-10-17 09:00:08,979 epoch 9 - iter 54/275 - loss 0.01584945 - time (sec): 2.48 - samples/sec: 1792.56 - lr: 0.000010 - momentum: 0.000000
2023-10-17 09:00:10,187 epoch 9 - iter 81/275 - loss 0.01163448 - time (sec): 3.68 - samples/sec: 1788.02 - lr: 0.000010 - momentum: 0.000000
2023-10-17 09:00:11,413 epoch 9 - iter 108/275 - loss 0.01764179 - time (sec): 4.91 - samples/sec: 1802.25 - lr: 0.000009 - momentum: 0.000000
2023-10-17 09:00:12,655 epoch 9 - iter 135/275 - loss 0.01935884 - time (sec): 6.15 - samples/sec: 1791.20 - lr: 0.000009 - momentum: 0.000000
2023-10-17 09:00:13,878 epoch 9 - iter 162/275 - loss 0.01708720 - time (sec): 7.38 - samples/sec: 1786.96 - lr: 0.000008 - momentum: 0.000000
2023-10-17 09:00:15,124 epoch 9 - iter 189/275 - loss 0.01596518 - time (sec): 8.62 - samples/sec: 1813.88 - lr: 0.000007 - momentum: 0.000000
2023-10-17 09:00:16,378 epoch 9 - iter 216/275 - loss 0.01572838 - time (sec): 9.88 - samples/sec: 1836.50 - lr: 0.000007 - momentum: 0.000000
2023-10-17 09:00:17,606 epoch 9 - iter 243/275 - loss 0.01611628 - time (sec): 11.10 - samples/sec: 1842.04 - lr: 0.000006 - momentum: 0.000000
2023-10-17 09:00:18,832 epoch 9 - iter 270/275 - loss 0.01566388 - time (sec): 12.33 - samples/sec: 1816.57 - lr: 0.000006 - momentum: 0.000000
2023-10-17 09:00:19,062 ----------------------------------------------------------------------------------------------------
2023-10-17 09:00:19,062 EPOCH 9 done: loss 0.0154 - lr: 0.000006
2023-10-17 09:00:19,699 DEV : loss 0.19913232326507568 - f1-score (micro avg)  0.8758
2023-10-17 09:00:19,703 ----------------------------------------------------------------------------------------------------
2023-10-17 09:00:20,910 epoch 10 - iter 27/275 - loss 0.02597141 - time (sec): 1.21 - samples/sec: 1665.80 - lr: 0.000005 - momentum: 0.000000
2023-10-17 09:00:22,172 epoch 10 - iter 54/275 - loss 0.01805506 - time (sec): 2.47 - samples/sec: 1648.16 - lr: 0.000005 - momentum: 0.000000
2023-10-17 09:00:23,400 epoch 10 - iter 81/275 - loss 0.01317504 - time (sec): 3.70 - samples/sec: 1721.95 - lr: 0.000004 - momentum: 0.000000
2023-10-17 09:00:24,643 epoch 10 - iter 108/275 - loss 0.01046857 - time (sec): 4.94 - samples/sec: 1772.68 - lr: 0.000004 - momentum: 0.000000
2023-10-17 09:00:25,890 epoch 10 - iter 135/275 - loss 0.00992712 - time (sec): 6.19 - samples/sec: 1788.40 - lr: 0.000003 - momentum: 0.000000
2023-10-17 09:00:27,118 epoch 10 - iter 162/275 - loss 0.01541164 - time (sec): 7.41 - samples/sec: 1821.87 - lr: 0.000002 - momentum: 0.000000
2023-10-17 09:00:28,329 epoch 10 - iter 189/275 - loss 0.01383796 - time (sec): 8.62 - samples/sec: 1826.20 - lr: 0.000002 - momentum: 0.000000
2023-10-17 09:00:29,529 epoch 10 - iter 216/275 - loss 0.01212638 - time (sec): 9.82 - samples/sec: 1830.76 - lr: 0.000001 - momentum: 0.000000
2023-10-17 09:00:30,752 epoch 10 - iter 243/275 - loss 0.01189330 - time (sec): 11.05 - samples/sec: 1833.49 - lr: 0.000001 - momentum: 0.000000
2023-10-17 09:00:31,980 epoch 10 - iter 270/275 - loss 0.01145146 - time (sec): 12.28 - samples/sec: 1830.13 - lr: 0.000000 - momentum: 0.000000
2023-10-17 09:00:32,203 ----------------------------------------------------------------------------------------------------
2023-10-17 09:00:32,203 EPOCH 10 done: loss 0.0113 - lr: 0.000000
2023-10-17 09:00:32,836 DEV : loss 0.2009844183921814 - f1-score (micro avg)  0.8785
2023-10-17 09:00:33,192 ----------------------------------------------------------------------------------------------------
2023-10-17 09:00:33,193 Loading model from best epoch ...
2023-10-17 09:00:34,548 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 09:00:35,319 
Results:
- F-score (micro) 0.9048
- F-score (macro) 0.8717
- Accuracy 0.8403

By class:
              precision    recall  f1-score   support

       scope     0.8920    0.8920    0.8920       176
        pers     0.9837    0.9453    0.9641       128
        work     0.8472    0.8243    0.8356        74
      object     1.0000    1.0000    1.0000         2
         loc     1.0000    0.5000    0.6667         2

   micro avg     0.9144    0.8953    0.9048       382
   macro avg     0.9446    0.8323    0.8717       382
weighted avg     0.9152    0.8953    0.9047       382

2023-10-17 09:00:35,319 ----------------------------------------------------------------------------------------------------