File size: 23,912 Bytes
0485b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
2023-10-17 08:53:34,961 ----------------------------------------------------------------------------------------------------
2023-10-17 08:53:34,962 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 08:53:34,962 ----------------------------------------------------------------------------------------------------
2023-10-17 08:53:34,963 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-17 08:53:34,963 ----------------------------------------------------------------------------------------------------
2023-10-17 08:53:34,963 Train:  1100 sentences
2023-10-17 08:53:34,963         (train_with_dev=False, train_with_test=False)
2023-10-17 08:53:34,963 ----------------------------------------------------------------------------------------------------
2023-10-17 08:53:34,963 Training Params:
2023-10-17 08:53:34,963  - learning_rate: "5e-05" 
2023-10-17 08:53:34,963  - mini_batch_size: "8"
2023-10-17 08:53:34,963  - max_epochs: "10"
2023-10-17 08:53:34,963  - shuffle: "True"
2023-10-17 08:53:34,963 ----------------------------------------------------------------------------------------------------
2023-10-17 08:53:34,963 Plugins:
2023-10-17 08:53:34,963  - TensorboardLogger
2023-10-17 08:53:34,963  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 08:53:34,963 ----------------------------------------------------------------------------------------------------
2023-10-17 08:53:34,963 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 08:53:34,963  - metric: "('micro avg', 'f1-score')"
2023-10-17 08:53:34,963 ----------------------------------------------------------------------------------------------------
2023-10-17 08:53:34,963 Computation:
2023-10-17 08:53:34,963  - compute on device: cuda:0
2023-10-17 08:53:34,963  - embedding storage: none
2023-10-17 08:53:34,963 ----------------------------------------------------------------------------------------------------
2023-10-17 08:53:34,963 Model training base path: "hmbench-ajmc/de-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-17 08:53:34,963 ----------------------------------------------------------------------------------------------------
2023-10-17 08:53:34,963 ----------------------------------------------------------------------------------------------------
2023-10-17 08:53:34,963 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 08:53:35,685 epoch 1 - iter 13/138 - loss 4.06947742 - time (sec): 0.72 - samples/sec: 3084.80 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:53:36,373 epoch 1 - iter 26/138 - loss 3.53460833 - time (sec): 1.41 - samples/sec: 2884.84 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:53:37,113 epoch 1 - iter 39/138 - loss 2.81906985 - time (sec): 2.15 - samples/sec: 2934.39 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:53:37,859 epoch 1 - iter 52/138 - loss 2.32739470 - time (sec): 2.89 - samples/sec: 2912.07 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:53:38,624 epoch 1 - iter 65/138 - loss 1.97469116 - time (sec): 3.66 - samples/sec: 2879.38 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:53:39,364 epoch 1 - iter 78/138 - loss 1.72761590 - time (sec): 4.40 - samples/sec: 2869.36 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:53:40,121 epoch 1 - iter 91/138 - loss 1.51466269 - time (sec): 5.16 - samples/sec: 2916.91 - lr: 0.000033 - momentum: 0.000000
2023-10-17 08:53:40,865 epoch 1 - iter 104/138 - loss 1.35593559 - time (sec): 5.90 - samples/sec: 2974.88 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:53:41,568 epoch 1 - iter 117/138 - loss 1.24744656 - time (sec): 6.60 - samples/sec: 2961.80 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:53:42,325 epoch 1 - iter 130/138 - loss 1.15825875 - time (sec): 7.36 - samples/sec: 2932.06 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:53:42,773 ----------------------------------------------------------------------------------------------------
2023-10-17 08:53:42,773 EPOCH 1 done: loss 1.1129 - lr: 0.000047
2023-10-17 08:53:43,555 DEV : loss 0.1926119476556778 - f1-score (micro avg)  0.7766
2023-10-17 08:53:43,560 saving best model
2023-10-17 08:53:43,920 ----------------------------------------------------------------------------------------------------
2023-10-17 08:53:44,655 epoch 2 - iter 13/138 - loss 0.17238555 - time (sec): 0.73 - samples/sec: 2968.02 - lr: 0.000050 - momentum: 0.000000
2023-10-17 08:53:45,359 epoch 2 - iter 26/138 - loss 0.17242125 - time (sec): 1.44 - samples/sec: 2980.23 - lr: 0.000049 - momentum: 0.000000
2023-10-17 08:53:46,110 epoch 2 - iter 39/138 - loss 0.17201537 - time (sec): 2.19 - samples/sec: 2920.07 - lr: 0.000048 - momentum: 0.000000
2023-10-17 08:53:46,864 epoch 2 - iter 52/138 - loss 0.17632595 - time (sec): 2.94 - samples/sec: 2963.47 - lr: 0.000048 - momentum: 0.000000
2023-10-17 08:53:47,592 epoch 2 - iter 65/138 - loss 0.16585204 - time (sec): 3.67 - samples/sec: 2930.80 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:53:48,358 epoch 2 - iter 78/138 - loss 0.17233931 - time (sec): 4.44 - samples/sec: 2950.18 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:53:49,132 epoch 2 - iter 91/138 - loss 0.17024609 - time (sec): 5.21 - samples/sec: 2926.88 - lr: 0.000046 - momentum: 0.000000
2023-10-17 08:53:49,959 epoch 2 - iter 104/138 - loss 0.17589124 - time (sec): 6.04 - samples/sec: 2925.32 - lr: 0.000046 - momentum: 0.000000
2023-10-17 08:53:50,690 epoch 2 - iter 117/138 - loss 0.16910689 - time (sec): 6.77 - samples/sec: 2913.93 - lr: 0.000045 - momentum: 0.000000
2023-10-17 08:53:51,426 epoch 2 - iter 130/138 - loss 0.16263917 - time (sec): 7.50 - samples/sec: 2887.16 - lr: 0.000045 - momentum: 0.000000
2023-10-17 08:53:51,877 ----------------------------------------------------------------------------------------------------
2023-10-17 08:53:51,877 EPOCH 2 done: loss 0.1644 - lr: 0.000045
2023-10-17 08:53:52,509 DEV : loss 0.1401386559009552 - f1-score (micro avg)  0.8
2023-10-17 08:53:52,514 saving best model
2023-10-17 08:53:52,950 ----------------------------------------------------------------------------------------------------
2023-10-17 08:53:53,657 epoch 3 - iter 13/138 - loss 0.10839392 - time (sec): 0.71 - samples/sec: 2862.79 - lr: 0.000044 - momentum: 0.000000
2023-10-17 08:53:54,345 epoch 3 - iter 26/138 - loss 0.09821987 - time (sec): 1.39 - samples/sec: 2726.84 - lr: 0.000043 - momentum: 0.000000
2023-10-17 08:53:55,042 epoch 3 - iter 39/138 - loss 0.09920961 - time (sec): 2.09 - samples/sec: 2832.75 - lr: 0.000043 - momentum: 0.000000
2023-10-17 08:53:55,868 epoch 3 - iter 52/138 - loss 0.10149162 - time (sec): 2.92 - samples/sec: 2879.44 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:53:56,566 epoch 3 - iter 65/138 - loss 0.09871974 - time (sec): 3.61 - samples/sec: 2855.39 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:53:57,338 epoch 3 - iter 78/138 - loss 0.09599052 - time (sec): 4.39 - samples/sec: 2870.37 - lr: 0.000041 - momentum: 0.000000
2023-10-17 08:53:58,058 epoch 3 - iter 91/138 - loss 0.09023016 - time (sec): 5.11 - samples/sec: 2878.12 - lr: 0.000041 - momentum: 0.000000
2023-10-17 08:53:58,800 epoch 3 - iter 104/138 - loss 0.08954002 - time (sec): 5.85 - samples/sec: 2892.06 - lr: 0.000040 - momentum: 0.000000
2023-10-17 08:53:59,591 epoch 3 - iter 117/138 - loss 0.08970388 - time (sec): 6.64 - samples/sec: 2886.08 - lr: 0.000040 - momentum: 0.000000
2023-10-17 08:54:00,344 epoch 3 - iter 130/138 - loss 0.09656639 - time (sec): 7.39 - samples/sec: 2903.71 - lr: 0.000039 - momentum: 0.000000
2023-10-17 08:54:00,809 ----------------------------------------------------------------------------------------------------
2023-10-17 08:54:00,809 EPOCH 3 done: loss 0.0961 - lr: 0.000039
2023-10-17 08:54:01,436 DEV : loss 0.12580935657024384 - f1-score (micro avg)  0.8492
2023-10-17 08:54:01,440 saving best model
2023-10-17 08:54:01,874 ----------------------------------------------------------------------------------------------------
2023-10-17 08:54:02,587 epoch 4 - iter 13/138 - loss 0.07047690 - time (sec): 0.71 - samples/sec: 2860.23 - lr: 0.000038 - momentum: 0.000000
2023-10-17 08:54:03,311 epoch 4 - iter 26/138 - loss 0.05110513 - time (sec): 1.44 - samples/sec: 2869.51 - lr: 0.000038 - momentum: 0.000000
2023-10-17 08:54:04,036 epoch 4 - iter 39/138 - loss 0.08593546 - time (sec): 2.16 - samples/sec: 2894.35 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:54:04,775 epoch 4 - iter 52/138 - loss 0.09311636 - time (sec): 2.90 - samples/sec: 2907.89 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:54:05,531 epoch 4 - iter 65/138 - loss 0.08520031 - time (sec): 3.66 - samples/sec: 2866.50 - lr: 0.000036 - momentum: 0.000000
2023-10-17 08:54:06,289 epoch 4 - iter 78/138 - loss 0.07696350 - time (sec): 4.41 - samples/sec: 2883.48 - lr: 0.000036 - momentum: 0.000000
2023-10-17 08:54:07,056 epoch 4 - iter 91/138 - loss 0.07443197 - time (sec): 5.18 - samples/sec: 2868.28 - lr: 0.000035 - momentum: 0.000000
2023-10-17 08:54:07,813 epoch 4 - iter 104/138 - loss 0.07494235 - time (sec): 5.94 - samples/sec: 2888.26 - lr: 0.000035 - momentum: 0.000000
2023-10-17 08:54:08,578 epoch 4 - iter 117/138 - loss 0.07524586 - time (sec): 6.70 - samples/sec: 2887.19 - lr: 0.000034 - momentum: 0.000000
2023-10-17 08:54:09,360 epoch 4 - iter 130/138 - loss 0.07303091 - time (sec): 7.49 - samples/sec: 2870.51 - lr: 0.000034 - momentum: 0.000000
2023-10-17 08:54:09,846 ----------------------------------------------------------------------------------------------------
2023-10-17 08:54:09,846 EPOCH 4 done: loss 0.0738 - lr: 0.000034
2023-10-17 08:54:10,479 DEV : loss 0.1469777375459671 - f1-score (micro avg)  0.8681
2023-10-17 08:54:10,484 saving best model
2023-10-17 08:54:10,928 ----------------------------------------------------------------------------------------------------
2023-10-17 08:54:11,633 epoch 5 - iter 13/138 - loss 0.09518052 - time (sec): 0.70 - samples/sec: 3280.21 - lr: 0.000033 - momentum: 0.000000
2023-10-17 08:54:12,326 epoch 5 - iter 26/138 - loss 0.06688716 - time (sec): 1.40 - samples/sec: 3186.06 - lr: 0.000032 - momentum: 0.000000
2023-10-17 08:54:13,021 epoch 5 - iter 39/138 - loss 0.05861502 - time (sec): 2.09 - samples/sec: 3059.78 - lr: 0.000032 - momentum: 0.000000
2023-10-17 08:54:13,701 epoch 5 - iter 52/138 - loss 0.06250234 - time (sec): 2.77 - samples/sec: 3000.26 - lr: 0.000031 - momentum: 0.000000
2023-10-17 08:54:14,423 epoch 5 - iter 65/138 - loss 0.06755541 - time (sec): 3.49 - samples/sec: 2995.35 - lr: 0.000031 - momentum: 0.000000
2023-10-17 08:54:15,175 epoch 5 - iter 78/138 - loss 0.06415957 - time (sec): 4.25 - samples/sec: 2977.27 - lr: 0.000030 - momentum: 0.000000
2023-10-17 08:54:15,945 epoch 5 - iter 91/138 - loss 0.06402975 - time (sec): 5.02 - samples/sec: 2950.01 - lr: 0.000030 - momentum: 0.000000
2023-10-17 08:54:16,713 epoch 5 - iter 104/138 - loss 0.05989598 - time (sec): 5.78 - samples/sec: 2965.03 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:54:17,459 epoch 5 - iter 117/138 - loss 0.05868487 - time (sec): 6.53 - samples/sec: 2961.32 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:54:18,229 epoch 5 - iter 130/138 - loss 0.05774891 - time (sec): 7.30 - samples/sec: 2950.84 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:54:18,677 ----------------------------------------------------------------------------------------------------
2023-10-17 08:54:18,678 EPOCH 5 done: loss 0.0555 - lr: 0.000028
2023-10-17 08:54:19,310 DEV : loss 0.16393792629241943 - f1-score (micro avg)  0.8619
2023-10-17 08:54:19,314 ----------------------------------------------------------------------------------------------------
2023-10-17 08:54:20,016 epoch 6 - iter 13/138 - loss 0.03744158 - time (sec): 0.70 - samples/sec: 2748.59 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:54:20,736 epoch 6 - iter 26/138 - loss 0.04542780 - time (sec): 1.42 - samples/sec: 2836.48 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:54:21,486 epoch 6 - iter 39/138 - loss 0.04843577 - time (sec): 2.17 - samples/sec: 2839.99 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:54:22,237 epoch 6 - iter 52/138 - loss 0.03793948 - time (sec): 2.92 - samples/sec: 2830.12 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:54:22,975 epoch 6 - iter 65/138 - loss 0.04494788 - time (sec): 3.66 - samples/sec: 2886.63 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:54:23,723 epoch 6 - iter 78/138 - loss 0.03905436 - time (sec): 4.41 - samples/sec: 2887.40 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:54:24,485 epoch 6 - iter 91/138 - loss 0.03803730 - time (sec): 5.17 - samples/sec: 2861.38 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:54:25,272 epoch 6 - iter 104/138 - loss 0.04047424 - time (sec): 5.96 - samples/sec: 2851.01 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:54:26,105 epoch 6 - iter 117/138 - loss 0.04769041 - time (sec): 6.79 - samples/sec: 2850.07 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:54:26,875 epoch 6 - iter 130/138 - loss 0.04603896 - time (sec): 7.56 - samples/sec: 2860.08 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:54:27,299 ----------------------------------------------------------------------------------------------------
2023-10-17 08:54:27,300 EPOCH 6 done: loss 0.0444 - lr: 0.000023
2023-10-17 08:54:27,937 DEV : loss 0.1778355985879898 - f1-score (micro avg)  0.867
2023-10-17 08:54:27,941 ----------------------------------------------------------------------------------------------------
2023-10-17 08:54:28,667 epoch 7 - iter 13/138 - loss 0.08203944 - time (sec): 0.72 - samples/sec: 2779.90 - lr: 0.000022 - momentum: 0.000000
2023-10-17 08:54:29,442 epoch 7 - iter 26/138 - loss 0.06638147 - time (sec): 1.50 - samples/sec: 2795.68 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:54:30,208 epoch 7 - iter 39/138 - loss 0.07442183 - time (sec): 2.27 - samples/sec: 2872.06 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:54:30,956 epoch 7 - iter 52/138 - loss 0.06170432 - time (sec): 3.01 - samples/sec: 2872.64 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:54:31,711 epoch 7 - iter 65/138 - loss 0.05092242 - time (sec): 3.77 - samples/sec: 2837.54 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:54:32,455 epoch 7 - iter 78/138 - loss 0.04529981 - time (sec): 4.51 - samples/sec: 2858.77 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:54:33,249 epoch 7 - iter 91/138 - loss 0.04041344 - time (sec): 5.31 - samples/sec: 2855.92 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:54:33,992 epoch 7 - iter 104/138 - loss 0.04050339 - time (sec): 6.05 - samples/sec: 2871.54 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:54:34,755 epoch 7 - iter 117/138 - loss 0.03924770 - time (sec): 6.81 - samples/sec: 2842.01 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:54:35,464 epoch 7 - iter 130/138 - loss 0.03944895 - time (sec): 7.52 - samples/sec: 2858.12 - lr: 0.000017 - momentum: 0.000000
2023-10-17 08:54:35,904 ----------------------------------------------------------------------------------------------------
2023-10-17 08:54:35,905 EPOCH 7 done: loss 0.0376 - lr: 0.000017
2023-10-17 08:54:36,571 DEV : loss 0.19011272490024567 - f1-score (micro avg)  0.8633
2023-10-17 08:54:36,575 ----------------------------------------------------------------------------------------------------
2023-10-17 08:54:37,347 epoch 8 - iter 13/138 - loss 0.01406125 - time (sec): 0.77 - samples/sec: 3038.31 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:54:38,068 epoch 8 - iter 26/138 - loss 0.02028170 - time (sec): 1.49 - samples/sec: 3041.21 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:54:38,782 epoch 8 - iter 39/138 - loss 0.02305527 - time (sec): 2.21 - samples/sec: 2941.13 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:54:39,559 epoch 8 - iter 52/138 - loss 0.01949837 - time (sec): 2.98 - samples/sec: 2905.93 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:54:40,353 epoch 8 - iter 65/138 - loss 0.01753884 - time (sec): 3.78 - samples/sec: 2938.16 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:54:41,072 epoch 8 - iter 78/138 - loss 0.01859406 - time (sec): 4.50 - samples/sec: 2930.11 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:54:41,860 epoch 8 - iter 91/138 - loss 0.02017696 - time (sec): 5.28 - samples/sec: 2914.13 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:54:42,631 epoch 8 - iter 104/138 - loss 0.02936815 - time (sec): 6.06 - samples/sec: 2908.50 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:54:43,370 epoch 8 - iter 117/138 - loss 0.03072266 - time (sec): 6.79 - samples/sec: 2888.90 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:54:44,137 epoch 8 - iter 130/138 - loss 0.03009208 - time (sec): 7.56 - samples/sec: 2869.34 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:54:44,550 ----------------------------------------------------------------------------------------------------
2023-10-17 08:54:44,550 EPOCH 8 done: loss 0.0298 - lr: 0.000012
2023-10-17 08:54:45,191 DEV : loss 0.17324329912662506 - f1-score (micro avg)  0.8726
2023-10-17 08:54:45,197 saving best model
2023-10-17 08:54:45,655 ----------------------------------------------------------------------------------------------------
2023-10-17 08:54:46,459 epoch 9 - iter 13/138 - loss 0.03966138 - time (sec): 0.80 - samples/sec: 2842.12 - lr: 0.000011 - momentum: 0.000000
2023-10-17 08:54:47,277 epoch 9 - iter 26/138 - loss 0.02599233 - time (sec): 1.62 - samples/sec: 2846.41 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:54:48,009 epoch 9 - iter 39/138 - loss 0.02395130 - time (sec): 2.35 - samples/sec: 2821.06 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:54:48,740 epoch 9 - iter 52/138 - loss 0.02886960 - time (sec): 3.08 - samples/sec: 2828.78 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:54:49,446 epoch 9 - iter 65/138 - loss 0.02820047 - time (sec): 3.79 - samples/sec: 2779.66 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:54:50,180 epoch 9 - iter 78/138 - loss 0.03240256 - time (sec): 4.52 - samples/sec: 2843.95 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:54:50,889 epoch 9 - iter 91/138 - loss 0.03208418 - time (sec): 5.23 - samples/sec: 2861.50 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:54:51,651 epoch 9 - iter 104/138 - loss 0.02859865 - time (sec): 5.99 - samples/sec: 2838.39 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:54:52,406 epoch 9 - iter 117/138 - loss 0.02625805 - time (sec): 6.75 - samples/sec: 2840.41 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:54:53,128 epoch 9 - iter 130/138 - loss 0.02679964 - time (sec): 7.47 - samples/sec: 2863.51 - lr: 0.000006 - momentum: 0.000000
2023-10-17 08:54:53,616 ----------------------------------------------------------------------------------------------------
2023-10-17 08:54:53,616 EPOCH 9 done: loss 0.0259 - lr: 0.000006
2023-10-17 08:54:54,251 DEV : loss 0.1794566512107849 - f1-score (micro avg)  0.8719
2023-10-17 08:54:54,256 ----------------------------------------------------------------------------------------------------
2023-10-17 08:54:55,006 epoch 10 - iter 13/138 - loss 0.01099146 - time (sec): 0.75 - samples/sec: 2743.28 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:54:55,776 epoch 10 - iter 26/138 - loss 0.01326709 - time (sec): 1.52 - samples/sec: 2925.20 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:54:56,488 epoch 10 - iter 39/138 - loss 0.01241961 - time (sec): 2.23 - samples/sec: 2940.35 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:54:57,181 epoch 10 - iter 52/138 - loss 0.01622066 - time (sec): 2.92 - samples/sec: 2851.97 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:54:57,917 epoch 10 - iter 65/138 - loss 0.01665366 - time (sec): 3.66 - samples/sec: 2875.42 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:54:58,666 epoch 10 - iter 78/138 - loss 0.01562260 - time (sec): 4.41 - samples/sec: 2849.59 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:54:59,384 epoch 10 - iter 91/138 - loss 0.01461411 - time (sec): 5.13 - samples/sec: 2877.77 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:55:00,182 epoch 10 - iter 104/138 - loss 0.01947795 - time (sec): 5.92 - samples/sec: 2890.62 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:55:00,978 epoch 10 - iter 117/138 - loss 0.01852363 - time (sec): 6.72 - samples/sec: 2879.18 - lr: 0.000001 - momentum: 0.000000
2023-10-17 08:55:01,755 epoch 10 - iter 130/138 - loss 0.01707996 - time (sec): 7.50 - samples/sec: 2872.11 - lr: 0.000000 - momentum: 0.000000
2023-10-17 08:55:02,225 ----------------------------------------------------------------------------------------------------
2023-10-17 08:55:02,226 EPOCH 10 done: loss 0.0168 - lr: 0.000000
2023-10-17 08:55:02,944 DEV : loss 0.18495064973831177 - f1-score (micro avg)  0.8705
2023-10-17 08:55:03,287 ----------------------------------------------------------------------------------------------------
2023-10-17 08:55:03,289 Loading model from best epoch ...
2023-10-17 08:55:04,669 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 08:55:05,488 
Results:
- F-score (micro) 0.9029
- F-score (macro) 0.7414
- Accuracy 0.8309

By class:
              precision    recall  f1-score   support

       scope     0.9029    0.8977    0.9003       176
        pers     0.9672    0.9219    0.9440       128
        work     0.8354    0.8919    0.8627        74
      object     0.0000    0.0000    0.0000         2
         loc     1.0000    1.0000    1.0000         2

   micro avg     0.9053    0.9005    0.9029       382
   macro avg     0.7411    0.7423    0.7414       382
weighted avg     0.9071    0.9005    0.9035       382

2023-10-17 08:55:05,488 ----------------------------------------------------------------------------------------------------