2023-10-23 18:16:14,534 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:16:14,535 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(64001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=25, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-23 18:16:14,535 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:16:14,535 MultiCorpus: 1214 train + 266 dev + 251 test sentences - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator 2023-10-23 18:16:14,535 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:16:14,535 Train: 1214 sentences 2023-10-23 18:16:14,536 (train_with_dev=False, train_with_test=False) 2023-10-23 18:16:14,536 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:16:14,536 Training Params: 2023-10-23 18:16:14,536 - learning_rate: "5e-05" 2023-10-23 18:16:14,536 - mini_batch_size: "4" 2023-10-23 18:16:14,536 - max_epochs: "10" 2023-10-23 18:16:14,536 - shuffle: "True" 2023-10-23 18:16:14,536 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:16:14,536 Plugins: 2023-10-23 18:16:14,536 - TensorboardLogger 2023-10-23 18:16:14,536 - LinearScheduler | warmup_fraction: '0.1' 2023-10-23 18:16:14,536 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:16:14,536 Final evaluation on model from best epoch (best-model.pt) 2023-10-23 18:16:14,536 - metric: "('micro avg', 'f1-score')" 2023-10-23 18:16:14,536 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:16:14,536 Computation: 2023-10-23 18:16:14,536 - compute on device: cuda:0 2023-10-23 18:16:14,536 - embedding storage: none 2023-10-23 18:16:14,536 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:16:14,536 Model training base path: "hmbench-ajmc/en-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3" 2023-10-23 18:16:14,536 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:16:14,536 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:16:14,537 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-23 18:16:16,168 epoch 1 - iter 30/304 - loss 2.81106393 - time (sec): 1.63 - samples/sec: 1868.20 - lr: 0.000005 - momentum: 0.000000 2023-10-23 18:16:17,803 epoch 1 - iter 60/304 - loss 1.93076019 - time (sec): 3.26 - samples/sec: 1809.64 - lr: 0.000010 - momentum: 0.000000 2023-10-23 18:16:19,444 epoch 1 - iter 90/304 - loss 1.46147412 - time (sec): 4.91 - samples/sec: 1814.82 - lr: 0.000015 - momentum: 0.000000 2023-10-23 18:16:21,083 epoch 1 - iter 120/304 - loss 1.20065349 - time (sec): 6.54 - samples/sec: 1830.61 - lr: 0.000020 - momentum: 0.000000 2023-10-23 18:16:22,722 epoch 1 - iter 150/304 - loss 1.01442418 - time (sec): 8.18 - samples/sec: 1840.20 - lr: 0.000025 - momentum: 0.000000 2023-10-23 18:16:24,360 epoch 1 - iter 180/304 - loss 0.89232529 - time (sec): 9.82 - samples/sec: 1850.31 - lr: 0.000029 - momentum: 0.000000 2023-10-23 18:16:25,998 epoch 1 - iter 210/304 - loss 0.78694129 - time (sec): 11.46 - samples/sec: 1858.68 - lr: 0.000034 - momentum: 0.000000 2023-10-23 18:16:27,642 epoch 1 - iter 240/304 - loss 0.71551296 - time (sec): 13.10 - samples/sec: 1858.63 - lr: 0.000039 - momentum: 0.000000 2023-10-23 18:16:29,280 epoch 1 - iter 270/304 - loss 0.64584501 - time (sec): 14.74 - samples/sec: 1871.71 - lr: 0.000044 - momentum: 0.000000 2023-10-23 18:16:30,918 epoch 1 - iter 300/304 - loss 0.60271094 - time (sec): 16.38 - samples/sec: 1866.99 - lr: 0.000049 - momentum: 0.000000 2023-10-23 18:16:31,135 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:16:31,135 EPOCH 1 done: loss 0.5980 - lr: 0.000049 2023-10-23 18:16:31,913 DEV : loss 0.16384108364582062 - f1-score (micro avg) 0.704 2023-10-23 18:16:31,921 saving best model 2023-10-23 18:16:32,319 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:16:33,933 epoch 2 - iter 30/304 - loss 0.13187891 - time (sec): 1.61 - samples/sec: 1921.94 - lr: 0.000049 - momentum: 0.000000 2023-10-23 18:16:35,566 epoch 2 - iter 60/304 - loss 0.12737012 - time (sec): 3.25 - samples/sec: 1942.32 - lr: 0.000049 - momentum: 0.000000 2023-10-23 18:16:37,200 epoch 2 - iter 90/304 - loss 0.12304473 - time (sec): 4.88 - samples/sec: 1887.11 - lr: 0.000048 - momentum: 0.000000 2023-10-23 18:16:38,830 epoch 2 - iter 120/304 - loss 0.12231441 - time (sec): 6.51 - samples/sec: 1875.57 - lr: 0.000048 - momentum: 0.000000 2023-10-23 18:16:40,451 epoch 2 - iter 150/304 - loss 0.12142969 - time (sec): 8.13 - samples/sec: 1860.22 - lr: 0.000047 - momentum: 0.000000 2023-10-23 18:16:42,079 epoch 2 - iter 180/304 - loss 0.12168571 - time (sec): 9.76 - samples/sec: 1866.79 - lr: 0.000047 - momentum: 0.000000 2023-10-23 18:16:43,699 epoch 2 - iter 210/304 - loss 0.12781452 - time (sec): 11.38 - samples/sec: 1840.27 - lr: 0.000046 - momentum: 0.000000 2023-10-23 18:16:45,340 epoch 2 - iter 240/304 - loss 0.12865335 - time (sec): 13.02 - samples/sec: 1857.53 - lr: 0.000046 - momentum: 0.000000 2023-10-23 18:16:46,971 epoch 2 - iter 270/304 - loss 0.12960732 - time (sec): 14.65 - samples/sec: 1863.18 - lr: 0.000045 - momentum: 0.000000 2023-10-23 18:16:48,610 epoch 2 - iter 300/304 - loss 0.12332332 - time (sec): 16.29 - samples/sec: 1880.23 - lr: 0.000045 - momentum: 0.000000 2023-10-23 18:16:48,825 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:16:48,825 EPOCH 2 done: loss 0.1226 - lr: 0.000045 2023-10-23 18:16:49,711 DEV : loss 0.14167819917201996 - f1-score (micro avg) 0.8188 2023-10-23 18:16:49,718 saving best model 2023-10-23 18:16:50,248 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:16:51,875 epoch 3 - iter 30/304 - loss 0.07030755 - time (sec): 1.63 - samples/sec: 1785.11 - lr: 0.000044 - momentum: 0.000000 2023-10-23 18:16:53,518 epoch 3 - iter 60/304 - loss 0.07494672 - time (sec): 3.27 - samples/sec: 1911.69 - lr: 0.000043 - momentum: 0.000000 2023-10-23 18:16:55,156 epoch 3 - iter 90/304 - loss 0.08781157 - time (sec): 4.91 - samples/sec: 1927.02 - lr: 0.000043 - momentum: 0.000000 2023-10-23 18:16:56,786 epoch 3 - iter 120/304 - loss 0.08801500 - time (sec): 6.54 - samples/sec: 1902.16 - lr: 0.000042 - momentum: 0.000000 2023-10-23 18:16:58,422 epoch 3 - iter 150/304 - loss 0.08096093 - time (sec): 8.17 - samples/sec: 1922.15 - lr: 0.000042 - momentum: 0.000000 2023-10-23 18:17:00,061 epoch 3 - iter 180/304 - loss 0.08068663 - time (sec): 9.81 - samples/sec: 1898.78 - lr: 0.000041 - momentum: 0.000000 2023-10-23 18:17:01,697 epoch 3 - iter 210/304 - loss 0.08424806 - time (sec): 11.45 - samples/sec: 1878.13 - lr: 0.000041 - momentum: 0.000000 2023-10-23 18:17:03,312 epoch 3 - iter 240/304 - loss 0.08231945 - time (sec): 13.06 - samples/sec: 1900.07 - lr: 0.000040 - momentum: 0.000000 2023-10-23 18:17:04,951 epoch 3 - iter 270/304 - loss 0.07987312 - time (sec): 14.70 - samples/sec: 1880.03 - lr: 0.000040 - momentum: 0.000000 2023-10-23 18:17:06,596 epoch 3 - iter 300/304 - loss 0.08623195 - time (sec): 16.35 - samples/sec: 1876.47 - lr: 0.000039 - momentum: 0.000000 2023-10-23 18:17:06,810 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:17:06,810 EPOCH 3 done: loss 0.0874 - lr: 0.000039 2023-10-23 18:17:07,670 DEV : loss 0.1868170201778412 - f1-score (micro avg) 0.8171 2023-10-23 18:17:07,678 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:17:09,306 epoch 4 - iter 30/304 - loss 0.03795868 - time (sec): 1.63 - samples/sec: 2070.92 - lr: 0.000038 - momentum: 0.000000 2023-10-23 18:17:10,945 epoch 4 - iter 60/304 - loss 0.03436106 - time (sec): 3.27 - samples/sec: 1990.77 - lr: 0.000038 - momentum: 0.000000 2023-10-23 18:17:12,583 epoch 4 - iter 90/304 - loss 0.05396697 - time (sec): 4.90 - samples/sec: 1900.22 - lr: 0.000037 - momentum: 0.000000 2023-10-23 18:17:14,225 epoch 4 - iter 120/304 - loss 0.04411729 - time (sec): 6.55 - samples/sec: 1907.64 - lr: 0.000037 - momentum: 0.000000 2023-10-23 18:17:15,858 epoch 4 - iter 150/304 - loss 0.04620010 - time (sec): 8.18 - samples/sec: 1892.75 - lr: 0.000036 - momentum: 0.000000 2023-10-23 18:17:17,502 epoch 4 - iter 180/304 - loss 0.05291311 - time (sec): 9.82 - samples/sec: 1887.18 - lr: 0.000036 - momentum: 0.000000 2023-10-23 18:17:19,138 epoch 4 - iter 210/304 - loss 0.06392533 - time (sec): 11.46 - samples/sec: 1888.42 - lr: 0.000035 - momentum: 0.000000 2023-10-23 18:17:20,771 epoch 4 - iter 240/304 - loss 0.06336046 - time (sec): 13.09 - samples/sec: 1883.10 - lr: 0.000035 - momentum: 0.000000 2023-10-23 18:17:22,404 epoch 4 - iter 270/304 - loss 0.06184609 - time (sec): 14.73 - samples/sec: 1879.24 - lr: 0.000034 - momentum: 0.000000 2023-10-23 18:17:24,030 epoch 4 - iter 300/304 - loss 0.05887253 - time (sec): 16.35 - samples/sec: 1870.50 - lr: 0.000033 - momentum: 0.000000 2023-10-23 18:17:24,245 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:17:24,246 EPOCH 4 done: loss 0.0581 - lr: 0.000033 2023-10-23 18:17:25,250 DEV : loss 0.1909182071685791 - f1-score (micro avg) 0.8271 2023-10-23 18:17:25,257 saving best model 2023-10-23 18:17:25,783 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:17:27,406 epoch 5 - iter 30/304 - loss 0.01744137 - time (sec): 1.62 - samples/sec: 1937.30 - lr: 0.000033 - momentum: 0.000000 2023-10-23 18:17:29,031 epoch 5 - iter 60/304 - loss 0.03338940 - time (sec): 3.25 - samples/sec: 1879.20 - lr: 0.000032 - momentum: 0.000000 2023-10-23 18:17:30,666 epoch 5 - iter 90/304 - loss 0.04690048 - time (sec): 4.88 - samples/sec: 1914.80 - lr: 0.000032 - momentum: 0.000000 2023-10-23 18:17:32,300 epoch 5 - iter 120/304 - loss 0.04346722 - time (sec): 6.52 - samples/sec: 1895.35 - lr: 0.000031 - momentum: 0.000000 2023-10-23 18:17:33,937 epoch 5 - iter 150/304 - loss 0.04056557 - time (sec): 8.15 - samples/sec: 1924.73 - lr: 0.000031 - momentum: 0.000000 2023-10-23 18:17:35,568 epoch 5 - iter 180/304 - loss 0.03650648 - time (sec): 9.78 - samples/sec: 1908.95 - lr: 0.000030 - momentum: 0.000000 2023-10-23 18:17:37,208 epoch 5 - iter 210/304 - loss 0.03565747 - time (sec): 11.42 - samples/sec: 1898.72 - lr: 0.000030 - momentum: 0.000000 2023-10-23 18:17:38,842 epoch 5 - iter 240/304 - loss 0.03624900 - time (sec): 13.06 - samples/sec: 1893.31 - lr: 0.000029 - momentum: 0.000000 2023-10-23 18:17:40,473 epoch 5 - iter 270/304 - loss 0.03997973 - time (sec): 14.69 - samples/sec: 1879.27 - lr: 0.000028 - momentum: 0.000000 2023-10-23 18:17:41,959 epoch 5 - iter 300/304 - loss 0.04238227 - time (sec): 16.17 - samples/sec: 1887.18 - lr: 0.000028 - momentum: 0.000000 2023-10-23 18:17:42,137 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:17:42,137 EPOCH 5 done: loss 0.0438 - lr: 0.000028 2023-10-23 18:17:42,996 DEV : loss 0.20630058646202087 - f1-score (micro avg) 0.8014 2023-10-23 18:17:43,003 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:17:44,652 epoch 6 - iter 30/304 - loss 0.07524903 - time (sec): 1.65 - samples/sec: 1896.84 - lr: 0.000027 - momentum: 0.000000 2023-10-23 18:17:46,280 epoch 6 - iter 60/304 - loss 0.05025896 - time (sec): 3.28 - samples/sec: 1832.90 - lr: 0.000027 - momentum: 0.000000 2023-10-23 18:17:47,919 epoch 6 - iter 90/304 - loss 0.04756550 - time (sec): 4.91 - samples/sec: 1879.40 - lr: 0.000026 - momentum: 0.000000 2023-10-23 18:17:49,557 epoch 6 - iter 120/304 - loss 0.03855495 - time (sec): 6.55 - samples/sec: 1856.87 - lr: 0.000026 - momentum: 0.000000 2023-10-23 18:17:51,183 epoch 6 - iter 150/304 - loss 0.04185719 - time (sec): 8.18 - samples/sec: 1851.78 - lr: 0.000025 - momentum: 0.000000 2023-10-23 18:17:52,810 epoch 6 - iter 180/304 - loss 0.03650979 - time (sec): 9.81 - samples/sec: 1838.74 - lr: 0.000025 - momentum: 0.000000 2023-10-23 18:17:54,443 epoch 6 - iter 210/304 - loss 0.03600914 - time (sec): 11.44 - samples/sec: 1845.91 - lr: 0.000024 - momentum: 0.000000 2023-10-23 18:17:56,084 epoch 6 - iter 240/304 - loss 0.03276981 - time (sec): 13.08 - samples/sec: 1865.06 - lr: 0.000023 - momentum: 0.000000 2023-10-23 18:17:57,720 epoch 6 - iter 270/304 - loss 0.03306713 - time (sec): 14.72 - samples/sec: 1862.62 - lr: 0.000023 - momentum: 0.000000 2023-10-23 18:17:59,360 epoch 6 - iter 300/304 - loss 0.03105096 - time (sec): 16.36 - samples/sec: 1876.42 - lr: 0.000022 - momentum: 0.000000 2023-10-23 18:17:59,574 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:17:59,574 EPOCH 6 done: loss 0.0308 - lr: 0.000022 2023-10-23 18:18:00,427 DEV : loss 0.22646591067314148 - f1-score (micro avg) 0.8223 2023-10-23 18:18:00,434 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:18:02,066 epoch 7 - iter 30/304 - loss 0.02843019 - time (sec): 1.63 - samples/sec: 1922.19 - lr: 0.000022 - momentum: 0.000000 2023-10-23 18:18:03,702 epoch 7 - iter 60/304 - loss 0.02264544 - time (sec): 3.27 - samples/sec: 1886.65 - lr: 0.000021 - momentum: 0.000000 2023-10-23 18:18:05,338 epoch 7 - iter 90/304 - loss 0.02267803 - time (sec): 4.90 - samples/sec: 1896.52 - lr: 0.000021 - momentum: 0.000000 2023-10-23 18:18:06,978 epoch 7 - iter 120/304 - loss 0.02033071 - time (sec): 6.54 - samples/sec: 1923.53 - lr: 0.000020 - momentum: 0.000000 2023-10-23 18:18:08,606 epoch 7 - iter 150/304 - loss 0.01831766 - time (sec): 8.17 - samples/sec: 1905.74 - lr: 0.000020 - momentum: 0.000000 2023-10-23 18:18:10,240 epoch 7 - iter 180/304 - loss 0.01927033 - time (sec): 9.80 - samples/sec: 1898.80 - lr: 0.000019 - momentum: 0.000000 2023-10-23 18:18:11,864 epoch 7 - iter 210/304 - loss 0.02071687 - time (sec): 11.43 - samples/sec: 1888.28 - lr: 0.000018 - momentum: 0.000000 2023-10-23 18:18:13,494 epoch 7 - iter 240/304 - loss 0.02263808 - time (sec): 13.06 - samples/sec: 1867.41 - lr: 0.000018 - momentum: 0.000000 2023-10-23 18:18:15,133 epoch 7 - iter 270/304 - loss 0.02451109 - time (sec): 14.70 - samples/sec: 1891.99 - lr: 0.000017 - momentum: 0.000000 2023-10-23 18:18:16,761 epoch 7 - iter 300/304 - loss 0.02486620 - time (sec): 16.33 - samples/sec: 1880.23 - lr: 0.000017 - momentum: 0.000000 2023-10-23 18:18:16,975 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:18:16,975 EPOCH 7 done: loss 0.0246 - lr: 0.000017 2023-10-23 18:18:17,816 DEV : loss 0.20806437730789185 - f1-score (micro avg) 0.8262 2023-10-23 18:18:17,823 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:18:19,440 epoch 8 - iter 30/304 - loss 0.03017504 - time (sec): 1.62 - samples/sec: 1665.61 - lr: 0.000016 - momentum: 0.000000 2023-10-23 18:18:21,061 epoch 8 - iter 60/304 - loss 0.01475323 - time (sec): 3.24 - samples/sec: 1791.60 - lr: 0.000016 - momentum: 0.000000 2023-10-23 18:18:22,689 epoch 8 - iter 90/304 - loss 0.01529115 - time (sec): 4.86 - samples/sec: 1824.73 - lr: 0.000015 - momentum: 0.000000 2023-10-23 18:18:24,301 epoch 8 - iter 120/304 - loss 0.01367787 - time (sec): 6.48 - samples/sec: 1797.21 - lr: 0.000015 - momentum: 0.000000 2023-10-23 18:18:25,946 epoch 8 - iter 150/304 - loss 0.01317154 - time (sec): 8.12 - samples/sec: 1874.76 - lr: 0.000014 - momentum: 0.000000 2023-10-23 18:18:27,541 epoch 8 - iter 180/304 - loss 0.01616983 - time (sec): 9.72 - samples/sec: 1901.04 - lr: 0.000013 - momentum: 0.000000 2023-10-23 18:18:29,175 epoch 8 - iter 210/304 - loss 0.01609663 - time (sec): 11.35 - samples/sec: 1892.89 - lr: 0.000013 - momentum: 0.000000 2023-10-23 18:18:30,814 epoch 8 - iter 240/304 - loss 0.01486684 - time (sec): 12.99 - samples/sec: 1926.77 - lr: 0.000012 - momentum: 0.000000 2023-10-23 18:18:32,438 epoch 8 - iter 270/304 - loss 0.01438102 - time (sec): 14.61 - samples/sec: 1916.14 - lr: 0.000012 - momentum: 0.000000 2023-10-23 18:18:34,068 epoch 8 - iter 300/304 - loss 0.01467520 - time (sec): 16.24 - samples/sec: 1888.31 - lr: 0.000011 - momentum: 0.000000 2023-10-23 18:18:34,281 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:18:34,281 EPOCH 8 done: loss 0.0145 - lr: 0.000011 2023-10-23 18:18:35,114 DEV : loss 0.21577374637126923 - f1-score (micro avg) 0.8517 2023-10-23 18:18:35,121 saving best model 2023-10-23 18:18:35,654 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:18:37,296 epoch 9 - iter 30/304 - loss 0.02217251 - time (sec): 1.64 - samples/sec: 2016.73 - lr: 0.000011 - momentum: 0.000000 2023-10-23 18:18:38,925 epoch 9 - iter 60/304 - loss 0.01548730 - time (sec): 3.27 - samples/sec: 1914.58 - lr: 0.000010 - momentum: 0.000000 2023-10-23 18:18:40,571 epoch 9 - iter 90/304 - loss 0.01781690 - time (sec): 4.91 - samples/sec: 1919.16 - lr: 0.000010 - momentum: 0.000000 2023-10-23 18:18:42,193 epoch 9 - iter 120/304 - loss 0.01604254 - time (sec): 6.54 - samples/sec: 1837.29 - lr: 0.000009 - momentum: 0.000000 2023-10-23 18:18:43,837 epoch 9 - iter 150/304 - loss 0.01483913 - time (sec): 8.18 - samples/sec: 1874.20 - lr: 0.000008 - momentum: 0.000000 2023-10-23 18:18:45,472 epoch 9 - iter 180/304 - loss 0.01278405 - time (sec): 9.82 - samples/sec: 1863.31 - lr: 0.000008 - momentum: 0.000000 2023-10-23 18:18:47,113 epoch 9 - iter 210/304 - loss 0.01183613 - time (sec): 11.46 - samples/sec: 1865.42 - lr: 0.000007 - momentum: 0.000000 2023-10-23 18:18:48,744 epoch 9 - iter 240/304 - loss 0.01173901 - time (sec): 13.09 - samples/sec: 1862.89 - lr: 0.000007 - momentum: 0.000000 2023-10-23 18:18:50,377 epoch 9 - iter 270/304 - loss 0.01107654 - time (sec): 14.72 - samples/sec: 1868.29 - lr: 0.000006 - momentum: 0.000000 2023-10-23 18:18:52,020 epoch 9 - iter 300/304 - loss 0.01093778 - time (sec): 16.36 - samples/sec: 1872.44 - lr: 0.000006 - momentum: 0.000000 2023-10-23 18:18:52,237 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:18:52,237 EPOCH 9 done: loss 0.0108 - lr: 0.000006 2023-10-23 18:18:53,118 DEV : loss 0.2204783409833908 - f1-score (micro avg) 0.8473 2023-10-23 18:18:53,125 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:18:54,762 epoch 10 - iter 30/304 - loss 0.00097800 - time (sec): 1.64 - samples/sec: 1856.40 - lr: 0.000005 - momentum: 0.000000 2023-10-23 18:18:56,397 epoch 10 - iter 60/304 - loss 0.00905964 - time (sec): 3.27 - samples/sec: 1873.85 - lr: 0.000005 - momentum: 0.000000 2023-10-23 18:18:58,043 epoch 10 - iter 90/304 - loss 0.00780886 - time (sec): 4.92 - samples/sec: 1900.28 - lr: 0.000004 - momentum: 0.000000 2023-10-23 18:18:59,671 epoch 10 - iter 120/304 - loss 0.00866515 - time (sec): 6.55 - samples/sec: 1865.78 - lr: 0.000003 - momentum: 0.000000 2023-10-23 18:19:01,310 epoch 10 - iter 150/304 - loss 0.00766781 - time (sec): 8.18 - samples/sec: 1880.41 - lr: 0.000003 - momentum: 0.000000 2023-10-23 18:19:02,940 epoch 10 - iter 180/304 - loss 0.00744633 - time (sec): 9.81 - samples/sec: 1878.27 - lr: 0.000002 - momentum: 0.000000 2023-10-23 18:19:04,571 epoch 10 - iter 210/304 - loss 0.00780657 - time (sec): 11.44 - samples/sec: 1870.69 - lr: 0.000002 - momentum: 0.000000 2023-10-23 18:19:06,209 epoch 10 - iter 240/304 - loss 0.00784100 - time (sec): 13.08 - samples/sec: 1892.77 - lr: 0.000001 - momentum: 0.000000 2023-10-23 18:19:07,839 epoch 10 - iter 270/304 - loss 0.00724030 - time (sec): 14.71 - samples/sec: 1877.08 - lr: 0.000001 - momentum: 0.000000 2023-10-23 18:19:09,472 epoch 10 - iter 300/304 - loss 0.00659561 - time (sec): 16.35 - samples/sec: 1872.36 - lr: 0.000000 - momentum: 0.000000 2023-10-23 18:19:09,686 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:19:09,686 EPOCH 10 done: loss 0.0065 - lr: 0.000000 2023-10-23 18:19:10,517 DEV : loss 0.22362594306468964 - f1-score (micro avg) 0.8427 2023-10-23 18:19:10,914 ---------------------------------------------------------------------------------------------------- 2023-10-23 18:19:10,915 Loading model from best epoch ... 2023-10-23 18:19:12,690 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object 2023-10-23 18:19:13,529 Results: - F-score (micro) 0.8081 - F-score (macro) 0.7142 - Accuracy 0.6874 By class: precision recall f1-score support scope 0.8013 0.8278 0.8143 151 work 0.6855 0.8947 0.7763 95 pers 0.8037 0.8958 0.8473 96 date 0.3333 0.3333 0.3333 3 loc 1.0000 0.6667 0.8000 3 micro avg 0.7628 0.8592 0.8081 348 macro avg 0.7248 0.7237 0.7142 348 weighted avg 0.7680 0.8592 0.8088 348 2023-10-23 18:19:13,529 ----------------------------------------------------------------------------------------------------