File size: 24,160 Bytes
075c173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
2023-10-17 09:54:13,867 ----------------------------------------------------------------------------------------------------
2023-10-17 09:54:13,868 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 09:54:13,868 ----------------------------------------------------------------------------------------------------
2023-10-17 09:54:13,869 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-17 09:54:13,869 ----------------------------------------------------------------------------------------------------
2023-10-17 09:54:13,869 Train:  1214 sentences
2023-10-17 09:54:13,869         (train_with_dev=False, train_with_test=False)
2023-10-17 09:54:13,869 ----------------------------------------------------------------------------------------------------
2023-10-17 09:54:13,869 Training Params:
2023-10-17 09:54:13,869  - learning_rate: "5e-05" 
2023-10-17 09:54:13,869  - mini_batch_size: "4"
2023-10-17 09:54:13,869  - max_epochs: "10"
2023-10-17 09:54:13,869  - shuffle: "True"
2023-10-17 09:54:13,869 ----------------------------------------------------------------------------------------------------
2023-10-17 09:54:13,869 Plugins:
2023-10-17 09:54:13,869  - TensorboardLogger
2023-10-17 09:54:13,869  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 09:54:13,869 ----------------------------------------------------------------------------------------------------
2023-10-17 09:54:13,869 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 09:54:13,869  - metric: "('micro avg', 'f1-score')"
2023-10-17 09:54:13,869 ----------------------------------------------------------------------------------------------------
2023-10-17 09:54:13,869 Computation:
2023-10-17 09:54:13,869  - compute on device: cuda:0
2023-10-17 09:54:13,869  - embedding storage: none
2023-10-17 09:54:13,869 ----------------------------------------------------------------------------------------------------
2023-10-17 09:54:13,869 Model training base path: "hmbench-ajmc/en-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-17 09:54:13,869 ----------------------------------------------------------------------------------------------------
2023-10-17 09:54:13,869 ----------------------------------------------------------------------------------------------------
2023-10-17 09:54:13,869 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 09:54:15,461 epoch 1 - iter 30/304 - loss 3.92541070 - time (sec): 1.59 - samples/sec: 1953.57 - lr: 0.000005 - momentum: 0.000000
2023-10-17 09:54:17,033 epoch 1 - iter 60/304 - loss 2.83002534 - time (sec): 3.16 - samples/sec: 1982.33 - lr: 0.000010 - momentum: 0.000000
2023-10-17 09:54:18,613 epoch 1 - iter 90/304 - loss 2.09110440 - time (sec): 4.74 - samples/sec: 1977.32 - lr: 0.000015 - momentum: 0.000000
2023-10-17 09:54:20,180 epoch 1 - iter 120/304 - loss 1.68334725 - time (sec): 6.31 - samples/sec: 1977.51 - lr: 0.000020 - momentum: 0.000000
2023-10-17 09:54:21,832 epoch 1 - iter 150/304 - loss 1.43709984 - time (sec): 7.96 - samples/sec: 1960.01 - lr: 0.000025 - momentum: 0.000000
2023-10-17 09:54:23,389 epoch 1 - iter 180/304 - loss 1.26564420 - time (sec): 9.52 - samples/sec: 1942.99 - lr: 0.000029 - momentum: 0.000000
2023-10-17 09:54:24,929 epoch 1 - iter 210/304 - loss 1.12056567 - time (sec): 11.06 - samples/sec: 1939.18 - lr: 0.000034 - momentum: 0.000000
2023-10-17 09:54:26,530 epoch 1 - iter 240/304 - loss 1.02447655 - time (sec): 12.66 - samples/sec: 1927.22 - lr: 0.000039 - momentum: 0.000000
2023-10-17 09:54:28,082 epoch 1 - iter 270/304 - loss 0.93337178 - time (sec): 14.21 - samples/sec: 1937.90 - lr: 0.000044 - momentum: 0.000000
2023-10-17 09:54:29,676 epoch 1 - iter 300/304 - loss 0.85762804 - time (sec): 15.81 - samples/sec: 1937.78 - lr: 0.000049 - momentum: 0.000000
2023-10-17 09:54:29,873 ----------------------------------------------------------------------------------------------------
2023-10-17 09:54:29,873 EPOCH 1 done: loss 0.8498 - lr: 0.000049
2023-10-17 09:54:30,898 DEV : loss 0.22860193252563477 - f1-score (micro avg)  0.6309
2023-10-17 09:54:30,907 saving best model
2023-10-17 09:54:31,343 ----------------------------------------------------------------------------------------------------
2023-10-17 09:54:32,716 epoch 2 - iter 30/304 - loss 0.17256119 - time (sec): 1.37 - samples/sec: 2189.96 - lr: 0.000049 - momentum: 0.000000
2023-10-17 09:54:34,134 epoch 2 - iter 60/304 - loss 0.17606219 - time (sec): 2.79 - samples/sec: 2176.91 - lr: 0.000049 - momentum: 0.000000
2023-10-17 09:54:35,573 epoch 2 - iter 90/304 - loss 0.16356435 - time (sec): 4.23 - samples/sec: 2168.56 - lr: 0.000048 - momentum: 0.000000
2023-10-17 09:54:37,179 epoch 2 - iter 120/304 - loss 0.15726544 - time (sec): 5.84 - samples/sec: 2064.08 - lr: 0.000048 - momentum: 0.000000
2023-10-17 09:54:38,816 epoch 2 - iter 150/304 - loss 0.15305299 - time (sec): 7.47 - samples/sec: 2045.50 - lr: 0.000047 - momentum: 0.000000
2023-10-17 09:54:40,335 epoch 2 - iter 180/304 - loss 0.14349988 - time (sec): 8.99 - samples/sec: 2048.80 - lr: 0.000047 - momentum: 0.000000
2023-10-17 09:54:41,745 epoch 2 - iter 210/304 - loss 0.14441468 - time (sec): 10.40 - samples/sec: 2073.44 - lr: 0.000046 - momentum: 0.000000
2023-10-17 09:54:43,222 epoch 2 - iter 240/304 - loss 0.13509089 - time (sec): 11.88 - samples/sec: 2071.61 - lr: 0.000046 - momentum: 0.000000
2023-10-17 09:54:44,816 epoch 2 - iter 270/304 - loss 0.13165195 - time (sec): 13.47 - samples/sec: 2051.25 - lr: 0.000045 - momentum: 0.000000
2023-10-17 09:54:46,437 epoch 2 - iter 300/304 - loss 0.13298263 - time (sec): 15.09 - samples/sec: 2031.22 - lr: 0.000045 - momentum: 0.000000
2023-10-17 09:54:46,656 ----------------------------------------------------------------------------------------------------
2023-10-17 09:54:46,656 EPOCH 2 done: loss 0.1329 - lr: 0.000045
2023-10-17 09:54:47,681 DEV : loss 0.16872060298919678 - f1-score (micro avg)  0.7932
2023-10-17 09:54:47,690 saving best model
2023-10-17 09:54:48,238 ----------------------------------------------------------------------------------------------------
2023-10-17 09:54:49,636 epoch 3 - iter 30/304 - loss 0.05274848 - time (sec): 1.40 - samples/sec: 2056.34 - lr: 0.000044 - momentum: 0.000000
2023-10-17 09:54:51,055 epoch 3 - iter 60/304 - loss 0.05982692 - time (sec): 2.81 - samples/sec: 2096.78 - lr: 0.000043 - momentum: 0.000000
2023-10-17 09:54:52,612 epoch 3 - iter 90/304 - loss 0.08228454 - time (sec): 4.37 - samples/sec: 2012.76 - lr: 0.000043 - momentum: 0.000000
2023-10-17 09:54:54,133 epoch 3 - iter 120/304 - loss 0.08042581 - time (sec): 5.89 - samples/sec: 2033.82 - lr: 0.000042 - momentum: 0.000000
2023-10-17 09:54:55,719 epoch 3 - iter 150/304 - loss 0.08178362 - time (sec): 7.48 - samples/sec: 2028.63 - lr: 0.000042 - momentum: 0.000000
2023-10-17 09:54:57,300 epoch 3 - iter 180/304 - loss 0.07941139 - time (sec): 9.06 - samples/sec: 2005.37 - lr: 0.000041 - momentum: 0.000000
2023-10-17 09:54:58,925 epoch 3 - iter 210/304 - loss 0.08265085 - time (sec): 10.69 - samples/sec: 1988.99 - lr: 0.000041 - momentum: 0.000000
2023-10-17 09:55:00,536 epoch 3 - iter 240/304 - loss 0.08573224 - time (sec): 12.30 - samples/sec: 1982.40 - lr: 0.000040 - momentum: 0.000000
2023-10-17 09:55:02,133 epoch 3 - iter 270/304 - loss 0.08997078 - time (sec): 13.89 - samples/sec: 1983.58 - lr: 0.000040 - momentum: 0.000000
2023-10-17 09:55:03,763 epoch 3 - iter 300/304 - loss 0.09055316 - time (sec): 15.52 - samples/sec: 1973.09 - lr: 0.000039 - momentum: 0.000000
2023-10-17 09:55:03,972 ----------------------------------------------------------------------------------------------------
2023-10-17 09:55:03,972 EPOCH 3 done: loss 0.0900 - lr: 0.000039
2023-10-17 09:55:04,903 DEV : loss 0.15869022905826569 - f1-score (micro avg)  0.8223
2023-10-17 09:55:04,910 saving best model
2023-10-17 09:55:05,438 ----------------------------------------------------------------------------------------------------
2023-10-17 09:55:07,051 epoch 4 - iter 30/304 - loss 0.22243641 - time (sec): 1.61 - samples/sec: 1882.75 - lr: 0.000038 - momentum: 0.000000
2023-10-17 09:55:08,660 epoch 4 - iter 60/304 - loss 0.18033808 - time (sec): 3.22 - samples/sec: 1820.17 - lr: 0.000038 - momentum: 0.000000
2023-10-17 09:55:10,291 epoch 4 - iter 90/304 - loss 0.14561604 - time (sec): 4.85 - samples/sec: 1879.90 - lr: 0.000037 - momentum: 0.000000
2023-10-17 09:55:11,877 epoch 4 - iter 120/304 - loss 0.11864431 - time (sec): 6.44 - samples/sec: 1918.44 - lr: 0.000037 - momentum: 0.000000
2023-10-17 09:55:13,540 epoch 4 - iter 150/304 - loss 0.10256781 - time (sec): 8.10 - samples/sec: 1903.01 - lr: 0.000036 - momentum: 0.000000
2023-10-17 09:55:15,143 epoch 4 - iter 180/304 - loss 0.09530623 - time (sec): 9.70 - samples/sec: 1894.36 - lr: 0.000036 - momentum: 0.000000
2023-10-17 09:55:16,608 epoch 4 - iter 210/304 - loss 0.09260037 - time (sec): 11.17 - samples/sec: 1937.91 - lr: 0.000035 - momentum: 0.000000
2023-10-17 09:55:18,006 epoch 4 - iter 240/304 - loss 0.08909074 - time (sec): 12.57 - samples/sec: 1956.66 - lr: 0.000035 - momentum: 0.000000
2023-10-17 09:55:19,439 epoch 4 - iter 270/304 - loss 0.08554726 - time (sec): 14.00 - samples/sec: 1961.12 - lr: 0.000034 - momentum: 0.000000
2023-10-17 09:55:20,866 epoch 4 - iter 300/304 - loss 0.08568790 - time (sec): 15.43 - samples/sec: 1983.06 - lr: 0.000033 - momentum: 0.000000
2023-10-17 09:55:21,051 ----------------------------------------------------------------------------------------------------
2023-10-17 09:55:21,051 EPOCH 4 done: loss 0.0880 - lr: 0.000033
2023-10-17 09:55:21,991 DEV : loss 0.1595626175403595 - f1-score (micro avg)  0.8343
2023-10-17 09:55:21,998 saving best model
2023-10-17 09:55:22,546 ----------------------------------------------------------------------------------------------------
2023-10-17 09:55:24,058 epoch 5 - iter 30/304 - loss 0.03697545 - time (sec): 1.51 - samples/sec: 1901.02 - lr: 0.000033 - momentum: 0.000000
2023-10-17 09:55:25,463 epoch 5 - iter 60/304 - loss 0.03777380 - time (sec): 2.92 - samples/sec: 2122.32 - lr: 0.000032 - momentum: 0.000000
2023-10-17 09:55:26,930 epoch 5 - iter 90/304 - loss 0.04110514 - time (sec): 4.38 - samples/sec: 2116.43 - lr: 0.000032 - momentum: 0.000000
2023-10-17 09:55:28,524 epoch 5 - iter 120/304 - loss 0.03961826 - time (sec): 5.98 - samples/sec: 2026.55 - lr: 0.000031 - momentum: 0.000000
2023-10-17 09:55:30,130 epoch 5 - iter 150/304 - loss 0.03751316 - time (sec): 7.58 - samples/sec: 2000.79 - lr: 0.000031 - momentum: 0.000000
2023-10-17 09:55:31,722 epoch 5 - iter 180/304 - loss 0.03548953 - time (sec): 9.17 - samples/sec: 1999.72 - lr: 0.000030 - momentum: 0.000000
2023-10-17 09:55:33,330 epoch 5 - iter 210/304 - loss 0.03902609 - time (sec): 10.78 - samples/sec: 1993.15 - lr: 0.000030 - momentum: 0.000000
2023-10-17 09:55:34,924 epoch 5 - iter 240/304 - loss 0.04171248 - time (sec): 12.38 - samples/sec: 1983.58 - lr: 0.000029 - momentum: 0.000000
2023-10-17 09:55:36,293 epoch 5 - iter 270/304 - loss 0.04498475 - time (sec): 13.75 - samples/sec: 2006.22 - lr: 0.000028 - momentum: 0.000000
2023-10-17 09:55:37,674 epoch 5 - iter 300/304 - loss 0.04539674 - time (sec): 15.13 - samples/sec: 2029.85 - lr: 0.000028 - momentum: 0.000000
2023-10-17 09:55:37,866 ----------------------------------------------------------------------------------------------------
2023-10-17 09:55:37,867 EPOCH 5 done: loss 0.0451 - lr: 0.000028
2023-10-17 09:55:38,795 DEV : loss 0.20325231552124023 - f1-score (micro avg)  0.8329
2023-10-17 09:55:38,802 ----------------------------------------------------------------------------------------------------
2023-10-17 09:55:40,200 epoch 6 - iter 30/304 - loss 0.02360420 - time (sec): 1.40 - samples/sec: 2411.55 - lr: 0.000027 - momentum: 0.000000
2023-10-17 09:55:41,733 epoch 6 - iter 60/304 - loss 0.05298460 - time (sec): 2.93 - samples/sec: 2193.31 - lr: 0.000027 - momentum: 0.000000
2023-10-17 09:55:43,186 epoch 6 - iter 90/304 - loss 0.04447507 - time (sec): 4.38 - samples/sec: 2108.37 - lr: 0.000026 - momentum: 0.000000
2023-10-17 09:55:44,803 epoch 6 - iter 120/304 - loss 0.04234440 - time (sec): 6.00 - samples/sec: 1974.90 - lr: 0.000026 - momentum: 0.000000
2023-10-17 09:55:46,379 epoch 6 - iter 150/304 - loss 0.04134043 - time (sec): 7.58 - samples/sec: 1975.51 - lr: 0.000025 - momentum: 0.000000
2023-10-17 09:55:47,935 epoch 6 - iter 180/304 - loss 0.03644266 - time (sec): 9.13 - samples/sec: 1981.53 - lr: 0.000025 - momentum: 0.000000
2023-10-17 09:55:49,333 epoch 6 - iter 210/304 - loss 0.03483795 - time (sec): 10.53 - samples/sec: 2026.41 - lr: 0.000024 - momentum: 0.000000
2023-10-17 09:55:50,701 epoch 6 - iter 240/304 - loss 0.03394206 - time (sec): 11.90 - samples/sec: 2018.44 - lr: 0.000023 - momentum: 0.000000
2023-10-17 09:55:52,129 epoch 6 - iter 270/304 - loss 0.03112237 - time (sec): 13.33 - samples/sec: 2054.51 - lr: 0.000023 - momentum: 0.000000
2023-10-17 09:55:53,532 epoch 6 - iter 300/304 - loss 0.03255731 - time (sec): 14.73 - samples/sec: 2074.43 - lr: 0.000022 - momentum: 0.000000
2023-10-17 09:55:53,717 ----------------------------------------------------------------------------------------------------
2023-10-17 09:55:53,717 EPOCH 6 done: loss 0.0331 - lr: 0.000022
2023-10-17 09:55:54,653 DEV : loss 0.19660867750644684 - f1-score (micro avg)  0.8392
2023-10-17 09:55:54,661 saving best model
2023-10-17 09:55:55,147 ----------------------------------------------------------------------------------------------------
2023-10-17 09:55:56,599 epoch 7 - iter 30/304 - loss 0.00971525 - time (sec): 1.45 - samples/sec: 2108.25 - lr: 0.000022 - momentum: 0.000000
2023-10-17 09:55:58,035 epoch 7 - iter 60/304 - loss 0.01823157 - time (sec): 2.88 - samples/sec: 2169.76 - lr: 0.000021 - momentum: 0.000000
2023-10-17 09:55:59,480 epoch 7 - iter 90/304 - loss 0.01503166 - time (sec): 4.33 - samples/sec: 2160.06 - lr: 0.000021 - momentum: 0.000000
2023-10-17 09:56:00,863 epoch 7 - iter 120/304 - loss 0.01826492 - time (sec): 5.71 - samples/sec: 2216.00 - lr: 0.000020 - momentum: 0.000000
2023-10-17 09:56:02,265 epoch 7 - iter 150/304 - loss 0.01729233 - time (sec): 7.11 - samples/sec: 2199.37 - lr: 0.000020 - momentum: 0.000000
2023-10-17 09:56:03,632 epoch 7 - iter 180/304 - loss 0.01866288 - time (sec): 8.48 - samples/sec: 2196.68 - lr: 0.000019 - momentum: 0.000000
2023-10-17 09:56:05,010 epoch 7 - iter 210/304 - loss 0.02159675 - time (sec): 9.86 - samples/sec: 2192.19 - lr: 0.000018 - momentum: 0.000000
2023-10-17 09:56:06,402 epoch 7 - iter 240/304 - loss 0.02325090 - time (sec): 11.25 - samples/sec: 2186.48 - lr: 0.000018 - momentum: 0.000000
2023-10-17 09:56:07,770 epoch 7 - iter 270/304 - loss 0.02334865 - time (sec): 12.62 - samples/sec: 2180.37 - lr: 0.000017 - momentum: 0.000000
2023-10-17 09:56:09,171 epoch 7 - iter 300/304 - loss 0.02307807 - time (sec): 14.02 - samples/sec: 2188.50 - lr: 0.000017 - momentum: 0.000000
2023-10-17 09:56:09,355 ----------------------------------------------------------------------------------------------------
2023-10-17 09:56:09,355 EPOCH 7 done: loss 0.0234 - lr: 0.000017
2023-10-17 09:56:10,274 DEV : loss 0.2072305530309677 - f1-score (micro avg)  0.84
2023-10-17 09:56:10,281 saving best model
2023-10-17 09:56:10,790 ----------------------------------------------------------------------------------------------------
2023-10-17 09:56:12,174 epoch 8 - iter 30/304 - loss 0.00679041 - time (sec): 1.38 - samples/sec: 2031.26 - lr: 0.000016 - momentum: 0.000000
2023-10-17 09:56:13,554 epoch 8 - iter 60/304 - loss 0.00994703 - time (sec): 2.76 - samples/sec: 2114.09 - lr: 0.000016 - momentum: 0.000000
2023-10-17 09:56:14,957 epoch 8 - iter 90/304 - loss 0.02010303 - time (sec): 4.17 - samples/sec: 2187.26 - lr: 0.000015 - momentum: 0.000000
2023-10-17 09:56:16,378 epoch 8 - iter 120/304 - loss 0.02061087 - time (sec): 5.59 - samples/sec: 2120.24 - lr: 0.000015 - momentum: 0.000000
2023-10-17 09:56:17,788 epoch 8 - iter 150/304 - loss 0.02246354 - time (sec): 7.00 - samples/sec: 2136.88 - lr: 0.000014 - momentum: 0.000000
2023-10-17 09:56:19,187 epoch 8 - iter 180/304 - loss 0.02369727 - time (sec): 8.40 - samples/sec: 2144.79 - lr: 0.000013 - momentum: 0.000000
2023-10-17 09:56:20,510 epoch 8 - iter 210/304 - loss 0.02258358 - time (sec): 9.72 - samples/sec: 2187.46 - lr: 0.000013 - momentum: 0.000000
2023-10-17 09:56:21,845 epoch 8 - iter 240/304 - loss 0.02108637 - time (sec): 11.05 - samples/sec: 2202.68 - lr: 0.000012 - momentum: 0.000000
2023-10-17 09:56:23,173 epoch 8 - iter 270/304 - loss 0.02132594 - time (sec): 12.38 - samples/sec: 2201.90 - lr: 0.000012 - momentum: 0.000000
2023-10-17 09:56:24,603 epoch 8 - iter 300/304 - loss 0.02121622 - time (sec): 13.81 - samples/sec: 2216.72 - lr: 0.000011 - momentum: 0.000000
2023-10-17 09:56:24,780 ----------------------------------------------------------------------------------------------------
2023-10-17 09:56:24,780 EPOCH 8 done: loss 0.0210 - lr: 0.000011
2023-10-17 09:56:25,723 DEV : loss 0.21292492747306824 - f1-score (micro avg)  0.848
2023-10-17 09:56:25,730 saving best model
2023-10-17 09:56:26,197 ----------------------------------------------------------------------------------------------------
2023-10-17 09:56:27,668 epoch 9 - iter 30/304 - loss 0.01587622 - time (sec): 1.47 - samples/sec: 2101.64 - lr: 0.000011 - momentum: 0.000000
2023-10-17 09:56:29,102 epoch 9 - iter 60/304 - loss 0.01070887 - time (sec): 2.90 - samples/sec: 2050.10 - lr: 0.000010 - momentum: 0.000000
2023-10-17 09:56:30,478 epoch 9 - iter 90/304 - loss 0.01496039 - time (sec): 4.28 - samples/sec: 2073.06 - lr: 0.000010 - momentum: 0.000000
2023-10-17 09:56:31,887 epoch 9 - iter 120/304 - loss 0.01124426 - time (sec): 5.69 - samples/sec: 2077.72 - lr: 0.000009 - momentum: 0.000000
2023-10-17 09:56:33,312 epoch 9 - iter 150/304 - loss 0.01410474 - time (sec): 7.11 - samples/sec: 2086.37 - lr: 0.000008 - momentum: 0.000000
2023-10-17 09:56:34,795 epoch 9 - iter 180/304 - loss 0.01244996 - time (sec): 8.60 - samples/sec: 2092.32 - lr: 0.000008 - momentum: 0.000000
2023-10-17 09:56:36,264 epoch 9 - iter 210/304 - loss 0.01248262 - time (sec): 10.06 - samples/sec: 2091.37 - lr: 0.000007 - momentum: 0.000000
2023-10-17 09:56:37,754 epoch 9 - iter 240/304 - loss 0.01213209 - time (sec): 11.55 - samples/sec: 2102.23 - lr: 0.000007 - momentum: 0.000000
2023-10-17 09:56:39,170 epoch 9 - iter 270/304 - loss 0.01353100 - time (sec): 12.97 - samples/sec: 2131.95 - lr: 0.000006 - momentum: 0.000000
2023-10-17 09:56:40,608 epoch 9 - iter 300/304 - loss 0.01378414 - time (sec): 14.41 - samples/sec: 2124.72 - lr: 0.000006 - momentum: 0.000000
2023-10-17 09:56:40,812 ----------------------------------------------------------------------------------------------------
2023-10-17 09:56:40,812 EPOCH 9 done: loss 0.0136 - lr: 0.000006
2023-10-17 09:56:41,731 DEV : loss 0.2044668346643448 - f1-score (micro avg)  0.8541
2023-10-17 09:56:41,738 saving best model
2023-10-17 09:56:42,227 ----------------------------------------------------------------------------------------------------
2023-10-17 09:56:43,715 epoch 10 - iter 30/304 - loss 0.01354305 - time (sec): 1.48 - samples/sec: 2072.22 - lr: 0.000005 - momentum: 0.000000
2023-10-17 09:56:45,124 epoch 10 - iter 60/304 - loss 0.00751199 - time (sec): 2.89 - samples/sec: 2071.21 - lr: 0.000005 - momentum: 0.000000
2023-10-17 09:56:46,546 epoch 10 - iter 90/304 - loss 0.00928881 - time (sec): 4.31 - samples/sec: 2161.61 - lr: 0.000004 - momentum: 0.000000
2023-10-17 09:56:47,844 epoch 10 - iter 120/304 - loss 0.01290944 - time (sec): 5.61 - samples/sec: 2182.17 - lr: 0.000003 - momentum: 0.000000
2023-10-17 09:56:49,142 epoch 10 - iter 150/304 - loss 0.01173024 - time (sec): 6.91 - samples/sec: 2205.14 - lr: 0.000003 - momentum: 0.000000
2023-10-17 09:56:50,445 epoch 10 - iter 180/304 - loss 0.01028826 - time (sec): 8.21 - samples/sec: 2220.18 - lr: 0.000002 - momentum: 0.000000
2023-10-17 09:56:51,743 epoch 10 - iter 210/304 - loss 0.00959073 - time (sec): 9.51 - samples/sec: 2213.19 - lr: 0.000002 - momentum: 0.000000
2023-10-17 09:56:53,047 epoch 10 - iter 240/304 - loss 0.00963868 - time (sec): 10.82 - samples/sec: 2205.85 - lr: 0.000001 - momentum: 0.000000
2023-10-17 09:56:54,380 epoch 10 - iter 270/304 - loss 0.00918610 - time (sec): 12.15 - samples/sec: 2248.93 - lr: 0.000001 - momentum: 0.000000
2023-10-17 09:56:55,708 epoch 10 - iter 300/304 - loss 0.01027470 - time (sec): 13.48 - samples/sec: 2269.04 - lr: 0.000000 - momentum: 0.000000
2023-10-17 09:56:55,887 ----------------------------------------------------------------------------------------------------
2023-10-17 09:56:55,887 EPOCH 10 done: loss 0.0101 - lr: 0.000000
2023-10-17 09:56:56,858 DEV : loss 0.21448352932929993 - f1-score (micro avg)  0.8595
2023-10-17 09:56:56,871 saving best model
2023-10-17 09:56:57,685 ----------------------------------------------------------------------------------------------------
2023-10-17 09:56:57,687 Loading model from best epoch ...
2023-10-17 09:56:59,606 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-17 09:57:00,722 
Results:
- F-score (micro) 0.8425
- F-score (macro) 0.7312
- Accuracy 0.7332

By class:
              precision    recall  f1-score   support

       scope     0.7812    0.8278    0.8039       151
        work     0.7944    0.8947    0.8416        95
        pers     0.8932    0.9583    0.9246        96
        date     0.2500    0.3333    0.2857         3
         loc     1.0000    0.6667    0.8000         3

   micro avg     0.8112    0.8764    0.8425       348
   macro avg     0.7438    0.7362    0.7312       348
weighted avg     0.8130    0.8764    0.8430       348

2023-10-17 09:57:00,722 ----------------------------------------------------------------------------------------------------