File size: 24,004 Bytes
6da5f41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-17 10:43:23,425 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:23,426 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 10:43:23,426 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:23,426 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-17 10:43:23,426 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:23,426 Train:  966 sentences
2023-10-17 10:43:23,426         (train_with_dev=False, train_with_test=False)
2023-10-17 10:43:23,426 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:23,426 Training Params:
2023-10-17 10:43:23,426  - learning_rate: "3e-05" 
2023-10-17 10:43:23,426  - mini_batch_size: "4"
2023-10-17 10:43:23,426  - max_epochs: "10"
2023-10-17 10:43:23,426  - shuffle: "True"
2023-10-17 10:43:23,426 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:23,426 Plugins:
2023-10-17 10:43:23,426  - TensorboardLogger
2023-10-17 10:43:23,426  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 10:43:23,426 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:23,426 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 10:43:23,426  - metric: "('micro avg', 'f1-score')"
2023-10-17 10:43:23,426 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:23,426 Computation:
2023-10-17 10:43:23,426  - compute on device: cuda:0
2023-10-17 10:43:23,426  - embedding storage: none
2023-10-17 10:43:23,427 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:23,427 Model training base path: "hmbench-ajmc/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-17 10:43:23,427 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:23,427 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:23,427 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 10:43:24,504 epoch 1 - iter 24/242 - loss 4.50633463 - time (sec): 1.08 - samples/sec: 2245.92 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:43:25,651 epoch 1 - iter 48/242 - loss 3.82310468 - time (sec): 2.22 - samples/sec: 2295.52 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:43:26,730 epoch 1 - iter 72/242 - loss 3.02011488 - time (sec): 3.30 - samples/sec: 2301.42 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:43:27,826 epoch 1 - iter 96/242 - loss 2.43709632 - time (sec): 4.40 - samples/sec: 2291.30 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:43:28,939 epoch 1 - iter 120/242 - loss 2.00850212 - time (sec): 5.51 - samples/sec: 2293.59 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:43:30,047 epoch 1 - iter 144/242 - loss 1.75672900 - time (sec): 6.62 - samples/sec: 2273.18 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:43:31,137 epoch 1 - iter 168/242 - loss 1.57371072 - time (sec): 7.71 - samples/sec: 2254.69 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:43:32,228 epoch 1 - iter 192/242 - loss 1.42447660 - time (sec): 8.80 - samples/sec: 2249.37 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:43:33,324 epoch 1 - iter 216/242 - loss 1.30854786 - time (sec): 9.90 - samples/sec: 2233.32 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:43:34,442 epoch 1 - iter 240/242 - loss 1.20350225 - time (sec): 11.01 - samples/sec: 2232.46 - lr: 0.000030 - momentum: 0.000000
2023-10-17 10:43:34,538 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:34,539 EPOCH 1 done: loss 1.1965 - lr: 0.000030
2023-10-17 10:43:35,140 DEV : loss 0.20349003374576569 - f1-score (micro avg)  0.5952
2023-10-17 10:43:35,145 saving best model
2023-10-17 10:43:35,589 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:36,737 epoch 2 - iter 24/242 - loss 0.23724173 - time (sec): 1.14 - samples/sec: 2280.62 - lr: 0.000030 - momentum: 0.000000
2023-10-17 10:43:37,830 epoch 2 - iter 48/242 - loss 0.24614221 - time (sec): 2.24 - samples/sec: 2212.47 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:43:38,930 epoch 2 - iter 72/242 - loss 0.22188577 - time (sec): 3.34 - samples/sec: 2234.71 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:43:40,028 epoch 2 - iter 96/242 - loss 0.20664918 - time (sec): 4.44 - samples/sec: 2205.45 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:43:41,124 epoch 2 - iter 120/242 - loss 0.20358552 - time (sec): 5.53 - samples/sec: 2171.39 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:43:42,221 epoch 2 - iter 144/242 - loss 0.20094148 - time (sec): 6.63 - samples/sec: 2194.89 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:43:43,305 epoch 2 - iter 168/242 - loss 0.19473548 - time (sec): 7.71 - samples/sec: 2179.83 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:43:44,416 epoch 2 - iter 192/242 - loss 0.18447914 - time (sec): 8.82 - samples/sec: 2231.47 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:43:45,511 epoch 2 - iter 216/242 - loss 0.17895642 - time (sec): 9.92 - samples/sec: 2224.42 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:43:46,628 epoch 2 - iter 240/242 - loss 0.17710668 - time (sec): 11.04 - samples/sec: 2226.50 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:43:46,715 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:46,716 EPOCH 2 done: loss 0.1767 - lr: 0.000027
2023-10-17 10:43:47,643 DEV : loss 0.14694465696811676 - f1-score (micro avg)  0.7711
2023-10-17 10:43:47,648 saving best model
2023-10-17 10:43:48,226 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:49,323 epoch 3 - iter 24/242 - loss 0.15723834 - time (sec): 1.10 - samples/sec: 2158.16 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:43:50,455 epoch 3 - iter 48/242 - loss 0.11376720 - time (sec): 2.23 - samples/sec: 2196.04 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:43:51,571 epoch 3 - iter 72/242 - loss 0.09861329 - time (sec): 3.34 - samples/sec: 2154.07 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:43:52,673 epoch 3 - iter 96/242 - loss 0.09545921 - time (sec): 4.45 - samples/sec: 2176.77 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:43:53,769 epoch 3 - iter 120/242 - loss 0.10069060 - time (sec): 5.54 - samples/sec: 2160.74 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:43:54,864 epoch 3 - iter 144/242 - loss 0.10195434 - time (sec): 6.64 - samples/sec: 2201.25 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:43:55,988 epoch 3 - iter 168/242 - loss 0.10207902 - time (sec): 7.76 - samples/sec: 2216.61 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:43:57,103 epoch 3 - iter 192/242 - loss 0.10383210 - time (sec): 8.88 - samples/sec: 2208.96 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:43:58,208 epoch 3 - iter 216/242 - loss 0.10017263 - time (sec): 9.98 - samples/sec: 2200.97 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:43:59,315 epoch 3 - iter 240/242 - loss 0.09984191 - time (sec): 11.09 - samples/sec: 2219.09 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:43:59,417 ----------------------------------------------------------------------------------------------------
2023-10-17 10:43:59,418 EPOCH 3 done: loss 0.0993 - lr: 0.000023
2023-10-17 10:44:00,199 DEV : loss 0.1559617966413498 - f1-score (micro avg)  0.808
2023-10-17 10:44:00,205 saving best model
2023-10-17 10:44:00,702 ----------------------------------------------------------------------------------------------------
2023-10-17 10:44:01,847 epoch 4 - iter 24/242 - loss 0.06933295 - time (sec): 1.14 - samples/sec: 2093.52 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:44:02,996 epoch 4 - iter 48/242 - loss 0.05508186 - time (sec): 2.29 - samples/sec: 2189.39 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:44:04,091 epoch 4 - iter 72/242 - loss 0.06080892 - time (sec): 3.39 - samples/sec: 2199.25 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:44:05,201 epoch 4 - iter 96/242 - loss 0.07338365 - time (sec): 4.50 - samples/sec: 2215.13 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:44:06,288 epoch 4 - iter 120/242 - loss 0.07371388 - time (sec): 5.58 - samples/sec: 2198.28 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:44:07,403 epoch 4 - iter 144/242 - loss 0.07076303 - time (sec): 6.70 - samples/sec: 2226.96 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:44:08,493 epoch 4 - iter 168/242 - loss 0.07489325 - time (sec): 7.79 - samples/sec: 2214.47 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:44:09,626 epoch 4 - iter 192/242 - loss 0.07280727 - time (sec): 8.92 - samples/sec: 2225.06 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:44:10,720 epoch 4 - iter 216/242 - loss 0.07819685 - time (sec): 10.02 - samples/sec: 2208.60 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:44:11,826 epoch 4 - iter 240/242 - loss 0.07332647 - time (sec): 11.12 - samples/sec: 2200.38 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:44:11,935 ----------------------------------------------------------------------------------------------------
2023-10-17 10:44:11,935 EPOCH 4 done: loss 0.0733 - lr: 0.000020
2023-10-17 10:44:12,722 DEV : loss 0.19135209918022156 - f1-score (micro avg)  0.8256
2023-10-17 10:44:12,728 saving best model
2023-10-17 10:44:13,211 ----------------------------------------------------------------------------------------------------
2023-10-17 10:44:14,356 epoch 5 - iter 24/242 - loss 0.08121044 - time (sec): 1.14 - samples/sec: 2319.35 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:44:15,513 epoch 5 - iter 48/242 - loss 0.06790236 - time (sec): 2.30 - samples/sec: 2213.89 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:44:16,650 epoch 5 - iter 72/242 - loss 0.06190861 - time (sec): 3.44 - samples/sec: 2182.35 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:44:17,799 epoch 5 - iter 96/242 - loss 0.06890864 - time (sec): 4.58 - samples/sec: 2199.39 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:44:18,927 epoch 5 - iter 120/242 - loss 0.06897976 - time (sec): 5.71 - samples/sec: 2178.28 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:44:20,031 epoch 5 - iter 144/242 - loss 0.06540872 - time (sec): 6.82 - samples/sec: 2194.58 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:44:21,139 epoch 5 - iter 168/242 - loss 0.06264734 - time (sec): 7.92 - samples/sec: 2210.53 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:44:22,255 epoch 5 - iter 192/242 - loss 0.06071230 - time (sec): 9.04 - samples/sec: 2189.02 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:44:23,381 epoch 5 - iter 216/242 - loss 0.05963512 - time (sec): 10.17 - samples/sec: 2183.75 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:44:24,528 epoch 5 - iter 240/242 - loss 0.05793629 - time (sec): 11.31 - samples/sec: 2167.55 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:44:24,627 ----------------------------------------------------------------------------------------------------
2023-10-17 10:44:24,627 EPOCH 5 done: loss 0.0582 - lr: 0.000017
2023-10-17 10:44:25,430 DEV : loss 0.1789170801639557 - f1-score (micro avg)  0.8348
2023-10-17 10:44:25,436 saving best model
2023-10-17 10:44:25,926 ----------------------------------------------------------------------------------------------------
2023-10-17 10:44:27,075 epoch 6 - iter 24/242 - loss 0.04985398 - time (sec): 1.15 - samples/sec: 2147.85 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:44:28,198 epoch 6 - iter 48/242 - loss 0.03267616 - time (sec): 2.27 - samples/sec: 2109.00 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:44:29,370 epoch 6 - iter 72/242 - loss 0.03996354 - time (sec): 3.44 - samples/sec: 2086.36 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:44:30,560 epoch 6 - iter 96/242 - loss 0.03958975 - time (sec): 4.63 - samples/sec: 2109.87 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:44:31,670 epoch 6 - iter 120/242 - loss 0.03543666 - time (sec): 5.74 - samples/sec: 2136.44 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:44:32,780 epoch 6 - iter 144/242 - loss 0.03336359 - time (sec): 6.85 - samples/sec: 2177.54 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:44:33,898 epoch 6 - iter 168/242 - loss 0.03902790 - time (sec): 7.97 - samples/sec: 2188.57 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:44:34,994 epoch 6 - iter 192/242 - loss 0.03982655 - time (sec): 9.07 - samples/sec: 2176.95 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:44:36,101 epoch 6 - iter 216/242 - loss 0.03921389 - time (sec): 10.17 - samples/sec: 2177.46 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:44:37,228 epoch 6 - iter 240/242 - loss 0.04014048 - time (sec): 11.30 - samples/sec: 2180.87 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:44:37,313 ----------------------------------------------------------------------------------------------------
2023-10-17 10:44:37,313 EPOCH 6 done: loss 0.0400 - lr: 0.000013
2023-10-17 10:44:38,136 DEV : loss 0.20801085233688354 - f1-score (micro avg)  0.8342
2023-10-17 10:44:38,143 ----------------------------------------------------------------------------------------------------
2023-10-17 10:44:39,307 epoch 7 - iter 24/242 - loss 0.04453521 - time (sec): 1.16 - samples/sec: 2337.69 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:44:40,400 epoch 7 - iter 48/242 - loss 0.03762355 - time (sec): 2.26 - samples/sec: 2123.43 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:44:41,491 epoch 7 - iter 72/242 - loss 0.03749958 - time (sec): 3.35 - samples/sec: 2164.38 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:44:42,687 epoch 7 - iter 96/242 - loss 0.03188376 - time (sec): 4.54 - samples/sec: 2117.00 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:44:43,804 epoch 7 - iter 120/242 - loss 0.03191117 - time (sec): 5.66 - samples/sec: 2155.71 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:44:44,972 epoch 7 - iter 144/242 - loss 0.03400510 - time (sec): 6.83 - samples/sec: 2200.24 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:44:46,096 epoch 7 - iter 168/242 - loss 0.03160299 - time (sec): 7.95 - samples/sec: 2167.96 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:44:47,235 epoch 7 - iter 192/242 - loss 0.03142760 - time (sec): 9.09 - samples/sec: 2191.91 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:44:48,362 epoch 7 - iter 216/242 - loss 0.03004264 - time (sec): 10.22 - samples/sec: 2167.76 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:44:49,462 epoch 7 - iter 240/242 - loss 0.03077950 - time (sec): 11.32 - samples/sec: 2170.15 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:44:49,553 ----------------------------------------------------------------------------------------------------
2023-10-17 10:44:49,553 EPOCH 7 done: loss 0.0306 - lr: 0.000010
2023-10-17 10:44:50,380 DEV : loss 0.21018549799919128 - f1-score (micro avg)  0.8596
2023-10-17 10:44:50,388 saving best model
2023-10-17 10:44:50,906 ----------------------------------------------------------------------------------------------------
2023-10-17 10:44:52,246 epoch 8 - iter 24/242 - loss 0.03256163 - time (sec): 1.34 - samples/sec: 1716.83 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:44:53,602 epoch 8 - iter 48/242 - loss 0.02384796 - time (sec): 2.69 - samples/sec: 1865.43 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:44:54,863 epoch 8 - iter 72/242 - loss 0.02107325 - time (sec): 3.95 - samples/sec: 1862.20 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:44:56,067 epoch 8 - iter 96/242 - loss 0.02937280 - time (sec): 5.16 - samples/sec: 1936.11 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:44:57,271 epoch 8 - iter 120/242 - loss 0.02524872 - time (sec): 6.36 - samples/sec: 1942.50 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:44:58,417 epoch 8 - iter 144/242 - loss 0.02384867 - time (sec): 7.51 - samples/sec: 1984.35 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:44:59,497 epoch 8 - iter 168/242 - loss 0.02335409 - time (sec): 8.59 - samples/sec: 2032.03 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:45:00,568 epoch 8 - iter 192/242 - loss 0.02365502 - time (sec): 9.66 - samples/sec: 2043.22 - lr: 0.000007 - momentum: 0.000000
2023-10-17 10:45:01,658 epoch 8 - iter 216/242 - loss 0.02187485 - time (sec): 10.75 - samples/sec: 2061.17 - lr: 0.000007 - momentum: 0.000000
2023-10-17 10:45:02,795 epoch 8 - iter 240/242 - loss 0.02079913 - time (sec): 11.89 - samples/sec: 2072.08 - lr: 0.000007 - momentum: 0.000000
2023-10-17 10:45:02,888 ----------------------------------------------------------------------------------------------------
2023-10-17 10:45:02,888 EPOCH 8 done: loss 0.0207 - lr: 0.000007
2023-10-17 10:45:03,719 DEV : loss 0.23265871405601501 - f1-score (micro avg)  0.8421
2023-10-17 10:45:03,725 ----------------------------------------------------------------------------------------------------
2023-10-17 10:45:04,829 epoch 9 - iter 24/242 - loss 0.00814737 - time (sec): 1.10 - samples/sec: 2295.02 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:45:05,961 epoch 9 - iter 48/242 - loss 0.01322277 - time (sec): 2.24 - samples/sec: 2286.61 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:45:07,144 epoch 9 - iter 72/242 - loss 0.01888777 - time (sec): 3.42 - samples/sec: 2221.38 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:45:08,312 epoch 9 - iter 96/242 - loss 0.01857381 - time (sec): 4.59 - samples/sec: 2157.28 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:45:09,457 epoch 9 - iter 120/242 - loss 0.02081802 - time (sec): 5.73 - samples/sec: 2137.30 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:45:10,609 epoch 9 - iter 144/242 - loss 0.01826304 - time (sec): 6.88 - samples/sec: 2095.25 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:45:11,768 epoch 9 - iter 168/242 - loss 0.01783901 - time (sec): 8.04 - samples/sec: 2117.99 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:45:12,874 epoch 9 - iter 192/242 - loss 0.01661624 - time (sec): 9.15 - samples/sec: 2137.79 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:45:14,034 epoch 9 - iter 216/242 - loss 0.01632579 - time (sec): 10.31 - samples/sec: 2154.43 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:45:15,123 epoch 9 - iter 240/242 - loss 0.01577096 - time (sec): 11.40 - samples/sec: 2154.03 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:45:15,213 ----------------------------------------------------------------------------------------------------
2023-10-17 10:45:15,213 EPOCH 9 done: loss 0.0157 - lr: 0.000003
2023-10-17 10:45:16,000 DEV : loss 0.24005292356014252 - f1-score (micro avg)  0.8385
2023-10-17 10:45:16,006 ----------------------------------------------------------------------------------------------------
2023-10-17 10:45:17,158 epoch 10 - iter 24/242 - loss 0.00587990 - time (sec): 1.15 - samples/sec: 2034.35 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:45:18,345 epoch 10 - iter 48/242 - loss 0.01906675 - time (sec): 2.34 - samples/sec: 2077.09 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:45:19,515 epoch 10 - iter 72/242 - loss 0.01409409 - time (sec): 3.51 - samples/sec: 2049.65 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:45:20,732 epoch 10 - iter 96/242 - loss 0.01134298 - time (sec): 4.72 - samples/sec: 2092.42 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:45:21,907 epoch 10 - iter 120/242 - loss 0.01067227 - time (sec): 5.90 - samples/sec: 2136.29 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:45:22,994 epoch 10 - iter 144/242 - loss 0.01308109 - time (sec): 6.99 - samples/sec: 2138.42 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:45:24,108 epoch 10 - iter 168/242 - loss 0.01406185 - time (sec): 8.10 - samples/sec: 2151.51 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:45:25,212 epoch 10 - iter 192/242 - loss 0.01385244 - time (sec): 9.20 - samples/sec: 2172.30 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:45:26,320 epoch 10 - iter 216/242 - loss 0.01384161 - time (sec): 10.31 - samples/sec: 2161.57 - lr: 0.000000 - momentum: 0.000000
2023-10-17 10:45:27,431 epoch 10 - iter 240/242 - loss 0.01381030 - time (sec): 11.42 - samples/sec: 2157.96 - lr: 0.000000 - momentum: 0.000000
2023-10-17 10:45:27,516 ----------------------------------------------------------------------------------------------------
2023-10-17 10:45:27,516 EPOCH 10 done: loss 0.0138 - lr: 0.000000
2023-10-17 10:45:28,314 DEV : loss 0.24683794379234314 - f1-score (micro avg)  0.8315
2023-10-17 10:45:28,746 ----------------------------------------------------------------------------------------------------
2023-10-17 10:45:28,748 Loading model from best epoch ...
2023-10-17 10:45:30,261 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 10:45:31,127 
Results:
- F-score (micro) 0.8168
- F-score (macro) 0.5547
- Accuracy 0.7066

By class:
              precision    recall  f1-score   support

        pers     0.8803    0.8993    0.8897       139
       scope     0.8175    0.8682    0.8421       129
        work     0.6526    0.7750    0.7086        80
         loc     0.6667    0.2222    0.3333         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7984    0.8361    0.8168       360
   macro avg     0.6034    0.5529    0.5547       360
weighted avg     0.7945    0.8361    0.8111       360

2023-10-17 10:45:31,127 ----------------------------------------------------------------------------------------------------