File size: 23,947 Bytes
6f4a369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-17 10:30:46,480 ----------------------------------------------------------------------------------------------------
2023-10-17 10:30:46,481 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 10:30:46,481 ----------------------------------------------------------------------------------------------------
2023-10-17 10:30:46,481 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-17 10:30:46,481 ----------------------------------------------------------------------------------------------------
2023-10-17 10:30:46,481 Train:  966 sentences
2023-10-17 10:30:46,481         (train_with_dev=False, train_with_test=False)
2023-10-17 10:30:46,481 ----------------------------------------------------------------------------------------------------
2023-10-17 10:30:46,481 Training Params:
2023-10-17 10:30:46,481  - learning_rate: "3e-05" 
2023-10-17 10:30:46,481  - mini_batch_size: "8"
2023-10-17 10:30:46,482  - max_epochs: "10"
2023-10-17 10:30:46,482  - shuffle: "True"
2023-10-17 10:30:46,482 ----------------------------------------------------------------------------------------------------
2023-10-17 10:30:46,482 Plugins:
2023-10-17 10:30:46,482  - TensorboardLogger
2023-10-17 10:30:46,482  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 10:30:46,482 ----------------------------------------------------------------------------------------------------
2023-10-17 10:30:46,482 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 10:30:46,482  - metric: "('micro avg', 'f1-score')"
2023-10-17 10:30:46,482 ----------------------------------------------------------------------------------------------------
2023-10-17 10:30:46,482 Computation:
2023-10-17 10:30:46,482  - compute on device: cuda:0
2023-10-17 10:30:46,482  - embedding storage: none
2023-10-17 10:30:46,482 ----------------------------------------------------------------------------------------------------
2023-10-17 10:30:46,482 Model training base path: "hmbench-ajmc/fr-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-17 10:30:46,482 ----------------------------------------------------------------------------------------------------
2023-10-17 10:30:46,482 ----------------------------------------------------------------------------------------------------
2023-10-17 10:30:46,482 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 10:30:47,180 epoch 1 - iter 12/121 - loss 3.32014436 - time (sec): 0.70 - samples/sec: 3341.33 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:30:47,895 epoch 1 - iter 24/121 - loss 3.03698276 - time (sec): 1.41 - samples/sec: 3164.77 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:30:48,614 epoch 1 - iter 36/121 - loss 2.60289546 - time (sec): 2.13 - samples/sec: 3210.20 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:30:49,403 epoch 1 - iter 48/121 - loss 2.12575385 - time (sec): 2.92 - samples/sec: 3218.41 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:30:50,203 epoch 1 - iter 60/121 - loss 1.79218853 - time (sec): 3.72 - samples/sec: 3229.86 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:30:50,952 epoch 1 - iter 72/121 - loss 1.58367041 - time (sec): 4.47 - samples/sec: 3227.29 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:30:51,711 epoch 1 - iter 84/121 - loss 1.41113578 - time (sec): 5.23 - samples/sec: 3230.06 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:30:52,492 epoch 1 - iter 96/121 - loss 1.26321860 - time (sec): 6.01 - samples/sec: 3242.76 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:30:53,219 epoch 1 - iter 108/121 - loss 1.16515662 - time (sec): 6.74 - samples/sec: 3258.23 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:30:54,001 epoch 1 - iter 120/121 - loss 1.07050963 - time (sec): 7.52 - samples/sec: 3269.52 - lr: 0.000030 - momentum: 0.000000
2023-10-17 10:30:54,065 ----------------------------------------------------------------------------------------------------
2023-10-17 10:30:54,065 EPOCH 1 done: loss 1.0649 - lr: 0.000030
2023-10-17 10:30:54,663 DEV : loss 0.2681349813938141 - f1-score (micro avg)  0.4935
2023-10-17 10:30:54,684 saving best model
2023-10-17 10:30:55,080 ----------------------------------------------------------------------------------------------------
2023-10-17 10:30:55,820 epoch 2 - iter 12/121 - loss 0.25245481 - time (sec): 0.74 - samples/sec: 3337.64 - lr: 0.000030 - momentum: 0.000000
2023-10-17 10:30:56,535 epoch 2 - iter 24/121 - loss 0.26119176 - time (sec): 1.45 - samples/sec: 3133.98 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:30:57,237 epoch 2 - iter 36/121 - loss 0.24934766 - time (sec): 2.16 - samples/sec: 3221.62 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:30:58,019 epoch 2 - iter 48/121 - loss 0.23822482 - time (sec): 2.94 - samples/sec: 3309.63 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:30:58,819 epoch 2 - iter 60/121 - loss 0.22963477 - time (sec): 3.74 - samples/sec: 3281.18 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:30:59,537 epoch 2 - iter 72/121 - loss 0.22640817 - time (sec): 4.46 - samples/sec: 3325.09 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:31:00,284 epoch 2 - iter 84/121 - loss 0.21803280 - time (sec): 5.20 - samples/sec: 3297.21 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:31:01,073 epoch 2 - iter 96/121 - loss 0.21012624 - time (sec): 5.99 - samples/sec: 3292.82 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:31:01,889 epoch 2 - iter 108/121 - loss 0.20287535 - time (sec): 6.81 - samples/sec: 3265.45 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:31:02,631 epoch 2 - iter 120/121 - loss 0.19816081 - time (sec): 7.55 - samples/sec: 3253.85 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:31:02,683 ----------------------------------------------------------------------------------------------------
2023-10-17 10:31:02,684 EPOCH 2 done: loss 0.1970 - lr: 0.000027
2023-10-17 10:31:03,620 DEV : loss 0.14390070736408234 - f1-score (micro avg)  0.7865
2023-10-17 10:31:03,626 saving best model
2023-10-17 10:31:04,142 ----------------------------------------------------------------------------------------------------
2023-10-17 10:31:04,908 epoch 3 - iter 12/121 - loss 0.12851785 - time (sec): 0.76 - samples/sec: 3266.94 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:31:05,676 epoch 3 - iter 24/121 - loss 0.11801002 - time (sec): 1.53 - samples/sec: 3172.63 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:31:06,544 epoch 3 - iter 36/121 - loss 0.11883823 - time (sec): 2.40 - samples/sec: 3152.48 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:31:07,247 epoch 3 - iter 48/121 - loss 0.11584504 - time (sec): 3.10 - samples/sec: 3236.72 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:31:07,977 epoch 3 - iter 60/121 - loss 0.11598349 - time (sec): 3.83 - samples/sec: 3231.54 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:31:08,729 epoch 3 - iter 72/121 - loss 0.11195592 - time (sec): 4.59 - samples/sec: 3307.42 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:31:09,437 epoch 3 - iter 84/121 - loss 0.11244840 - time (sec): 5.29 - samples/sec: 3263.56 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:31:10,139 epoch 3 - iter 96/121 - loss 0.11154599 - time (sec): 6.00 - samples/sec: 3284.81 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:31:10,902 epoch 3 - iter 108/121 - loss 0.11047003 - time (sec): 6.76 - samples/sec: 3316.08 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:31:11,650 epoch 3 - iter 120/121 - loss 0.11039208 - time (sec): 7.51 - samples/sec: 3286.62 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:31:11,702 ----------------------------------------------------------------------------------------------------
2023-10-17 10:31:11,702 EPOCH 3 done: loss 0.1103 - lr: 0.000023
2023-10-17 10:31:12,489 DEV : loss 0.12160782516002655 - f1-score (micro avg)  0.8291
2023-10-17 10:31:12,496 saving best model
2023-10-17 10:31:13,042 ----------------------------------------------------------------------------------------------------
2023-10-17 10:31:13,802 epoch 4 - iter 12/121 - loss 0.11078327 - time (sec): 0.76 - samples/sec: 3345.15 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:31:14,541 epoch 4 - iter 24/121 - loss 0.08753515 - time (sec): 1.49 - samples/sec: 3287.89 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:31:15,310 epoch 4 - iter 36/121 - loss 0.07917905 - time (sec): 2.26 - samples/sec: 3283.48 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:31:16,076 epoch 4 - iter 48/121 - loss 0.08826692 - time (sec): 3.03 - samples/sec: 3202.60 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:31:16,818 epoch 4 - iter 60/121 - loss 0.08527749 - time (sec): 3.77 - samples/sec: 3296.24 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:31:17,630 epoch 4 - iter 72/121 - loss 0.07703033 - time (sec): 4.58 - samples/sec: 3254.92 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:31:18,439 epoch 4 - iter 84/121 - loss 0.07353993 - time (sec): 5.39 - samples/sec: 3231.75 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:31:19,176 epoch 4 - iter 96/121 - loss 0.08026535 - time (sec): 6.13 - samples/sec: 3235.43 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:31:19,945 epoch 4 - iter 108/121 - loss 0.07860544 - time (sec): 6.90 - samples/sec: 3210.15 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:31:20,747 epoch 4 - iter 120/121 - loss 0.07637764 - time (sec): 7.70 - samples/sec: 3188.34 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:31:20,801 ----------------------------------------------------------------------------------------------------
2023-10-17 10:31:20,801 EPOCH 4 done: loss 0.0759 - lr: 0.000020
2023-10-17 10:31:21,561 DEV : loss 0.15159755945205688 - f1-score (micro avg)  0.8256
2023-10-17 10:31:21,567 ----------------------------------------------------------------------------------------------------
2023-10-17 10:31:22,406 epoch 5 - iter 12/121 - loss 0.04424314 - time (sec): 0.84 - samples/sec: 3332.19 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:31:23,111 epoch 5 - iter 24/121 - loss 0.04608236 - time (sec): 1.54 - samples/sec: 3209.53 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:31:23,879 epoch 5 - iter 36/121 - loss 0.05514976 - time (sec): 2.31 - samples/sec: 3254.88 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:31:24,663 epoch 5 - iter 48/121 - loss 0.05155823 - time (sec): 3.10 - samples/sec: 3216.27 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:31:25,390 epoch 5 - iter 60/121 - loss 0.04998764 - time (sec): 3.82 - samples/sec: 3231.78 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:31:26,176 epoch 5 - iter 72/121 - loss 0.04908976 - time (sec): 4.61 - samples/sec: 3215.16 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:31:26,888 epoch 5 - iter 84/121 - loss 0.05123180 - time (sec): 5.32 - samples/sec: 3284.23 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:31:27,640 epoch 5 - iter 96/121 - loss 0.05213783 - time (sec): 6.07 - samples/sec: 3239.37 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:31:28,342 epoch 5 - iter 108/121 - loss 0.05143224 - time (sec): 6.77 - samples/sec: 3261.78 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:31:29,078 epoch 5 - iter 120/121 - loss 0.05380168 - time (sec): 7.51 - samples/sec: 3269.60 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:31:29,148 ----------------------------------------------------------------------------------------------------
2023-10-17 10:31:29,148 EPOCH 5 done: loss 0.0535 - lr: 0.000017
2023-10-17 10:31:29,934 DEV : loss 0.1807931661605835 - f1-score (micro avg)  0.8184
2023-10-17 10:31:29,939 ----------------------------------------------------------------------------------------------------
2023-10-17 10:31:30,664 epoch 6 - iter 12/121 - loss 0.02907978 - time (sec): 0.72 - samples/sec: 3666.62 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:31:31,448 epoch 6 - iter 24/121 - loss 0.03751196 - time (sec): 1.51 - samples/sec: 3403.32 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:31:32,212 epoch 6 - iter 36/121 - loss 0.03357465 - time (sec): 2.27 - samples/sec: 3379.66 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:31:32,943 epoch 6 - iter 48/121 - loss 0.03308335 - time (sec): 3.00 - samples/sec: 3306.25 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:31:33,743 epoch 6 - iter 60/121 - loss 0.03111144 - time (sec): 3.80 - samples/sec: 3262.25 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:31:34,478 epoch 6 - iter 72/121 - loss 0.03577265 - time (sec): 4.54 - samples/sec: 3274.54 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:31:35,208 epoch 6 - iter 84/121 - loss 0.03581138 - time (sec): 5.27 - samples/sec: 3276.39 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:31:35,984 epoch 6 - iter 96/121 - loss 0.03882524 - time (sec): 6.04 - samples/sec: 3271.90 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:31:36,683 epoch 6 - iter 108/121 - loss 0.04161598 - time (sec): 6.74 - samples/sec: 3285.34 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:31:37,436 epoch 6 - iter 120/121 - loss 0.04249901 - time (sec): 7.50 - samples/sec: 3284.29 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:31:37,483 ----------------------------------------------------------------------------------------------------
2023-10-17 10:31:37,483 EPOCH 6 done: loss 0.0428 - lr: 0.000013
2023-10-17 10:31:38,252 DEV : loss 0.1748889535665512 - f1-score (micro avg)  0.8253
2023-10-17 10:31:38,257 ----------------------------------------------------------------------------------------------------
2023-10-17 10:31:39,002 epoch 7 - iter 12/121 - loss 0.03329241 - time (sec): 0.74 - samples/sec: 3548.32 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:31:39,762 epoch 7 - iter 24/121 - loss 0.03701914 - time (sec): 1.50 - samples/sec: 3354.87 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:31:40,548 epoch 7 - iter 36/121 - loss 0.03906978 - time (sec): 2.29 - samples/sec: 3286.41 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:31:41,283 epoch 7 - iter 48/121 - loss 0.03915569 - time (sec): 3.02 - samples/sec: 3288.91 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:31:42,096 epoch 7 - iter 60/121 - loss 0.03641657 - time (sec): 3.84 - samples/sec: 3299.32 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:31:42,798 epoch 7 - iter 72/121 - loss 0.03452311 - time (sec): 4.54 - samples/sec: 3329.70 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:31:43,580 epoch 7 - iter 84/121 - loss 0.03223815 - time (sec): 5.32 - samples/sec: 3301.68 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:31:44,284 epoch 7 - iter 96/121 - loss 0.03201468 - time (sec): 6.03 - samples/sec: 3266.72 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:31:45,041 epoch 7 - iter 108/121 - loss 0.03162600 - time (sec): 6.78 - samples/sec: 3269.40 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:31:45,765 epoch 7 - iter 120/121 - loss 0.03052726 - time (sec): 7.51 - samples/sec: 3270.34 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:31:45,821 ----------------------------------------------------------------------------------------------------
2023-10-17 10:31:45,821 EPOCH 7 done: loss 0.0307 - lr: 0.000010
2023-10-17 10:31:46,595 DEV : loss 0.19148583710193634 - f1-score (micro avg)  0.8285
2023-10-17 10:31:46,602 ----------------------------------------------------------------------------------------------------
2023-10-17 10:31:47,350 epoch 8 - iter 12/121 - loss 0.02759122 - time (sec): 0.75 - samples/sec: 3163.70 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:31:48,073 epoch 8 - iter 24/121 - loss 0.01779458 - time (sec): 1.47 - samples/sec: 3283.46 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:31:48,882 epoch 8 - iter 36/121 - loss 0.01975104 - time (sec): 2.28 - samples/sec: 3250.84 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:31:49,674 epoch 8 - iter 48/121 - loss 0.02004782 - time (sec): 3.07 - samples/sec: 3265.70 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:31:50,435 epoch 8 - iter 60/121 - loss 0.02196078 - time (sec): 3.83 - samples/sec: 3274.88 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:31:51,149 epoch 8 - iter 72/121 - loss 0.02076302 - time (sec): 4.55 - samples/sec: 3326.58 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:31:51,896 epoch 8 - iter 84/121 - loss 0.02046546 - time (sec): 5.29 - samples/sec: 3305.81 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:31:52,592 epoch 8 - iter 96/121 - loss 0.02295288 - time (sec): 5.99 - samples/sec: 3273.69 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:31:53,434 epoch 8 - iter 108/121 - loss 0.02253970 - time (sec): 6.83 - samples/sec: 3288.26 - lr: 0.000007 - momentum: 0.000000
2023-10-17 10:31:54,157 epoch 8 - iter 120/121 - loss 0.02232507 - time (sec): 7.55 - samples/sec: 3256.21 - lr: 0.000007 - momentum: 0.000000
2023-10-17 10:31:54,209 ----------------------------------------------------------------------------------------------------
2023-10-17 10:31:54,209 EPOCH 8 done: loss 0.0222 - lr: 0.000007
2023-10-17 10:31:54,991 DEV : loss 0.20282834768295288 - f1-score (micro avg)  0.8335
2023-10-17 10:31:54,998 saving best model
2023-10-17 10:31:55,515 ----------------------------------------------------------------------------------------------------
2023-10-17 10:31:56,245 epoch 9 - iter 12/121 - loss 0.02835444 - time (sec): 0.73 - samples/sec: 3199.43 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:31:57,028 epoch 9 - iter 24/121 - loss 0.02810493 - time (sec): 1.51 - samples/sec: 3014.12 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:31:57,834 epoch 9 - iter 36/121 - loss 0.02511085 - time (sec): 2.32 - samples/sec: 3074.24 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:31:58,596 epoch 9 - iter 48/121 - loss 0.01989365 - time (sec): 3.08 - samples/sec: 3162.59 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:31:59,361 epoch 9 - iter 60/121 - loss 0.02370575 - time (sec): 3.84 - samples/sec: 3136.55 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:32:00,170 epoch 9 - iter 72/121 - loss 0.02151435 - time (sec): 4.65 - samples/sec: 3130.56 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:32:00,899 epoch 9 - iter 84/121 - loss 0.02058558 - time (sec): 5.38 - samples/sec: 3137.75 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:32:01,638 epoch 9 - iter 96/121 - loss 0.01989155 - time (sec): 6.12 - samples/sec: 3183.90 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:32:02,392 epoch 9 - iter 108/121 - loss 0.01893313 - time (sec): 6.88 - samples/sec: 3207.02 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:32:03,161 epoch 9 - iter 120/121 - loss 0.01778422 - time (sec): 7.64 - samples/sec: 3210.96 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:32:03,225 ----------------------------------------------------------------------------------------------------
2023-10-17 10:32:03,226 EPOCH 9 done: loss 0.0176 - lr: 0.000004
2023-10-17 10:32:04,012 DEV : loss 0.21387448906898499 - f1-score (micro avg)  0.8369
2023-10-17 10:32:04,018 saving best model
2023-10-17 10:32:04,521 ----------------------------------------------------------------------------------------------------
2023-10-17 10:32:05,226 epoch 10 - iter 12/121 - loss 0.00693211 - time (sec): 0.70 - samples/sec: 3366.89 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:32:05,952 epoch 10 - iter 24/121 - loss 0.00979826 - time (sec): 1.43 - samples/sec: 3436.56 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:32:06,680 epoch 10 - iter 36/121 - loss 0.00987826 - time (sec): 2.16 - samples/sec: 3403.89 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:32:07,502 epoch 10 - iter 48/121 - loss 0.00849950 - time (sec): 2.98 - samples/sec: 3324.42 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:32:08,354 epoch 10 - iter 60/121 - loss 0.00902092 - time (sec): 3.83 - samples/sec: 3253.92 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:32:09,127 epoch 10 - iter 72/121 - loss 0.00916563 - time (sec): 4.60 - samples/sec: 3237.50 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:32:09,874 epoch 10 - iter 84/121 - loss 0.00985326 - time (sec): 5.35 - samples/sec: 3243.53 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:32:10,679 epoch 10 - iter 96/121 - loss 0.01078985 - time (sec): 6.16 - samples/sec: 3250.04 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:32:11,422 epoch 10 - iter 108/121 - loss 0.01288405 - time (sec): 6.90 - samples/sec: 3244.72 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:32:12,146 epoch 10 - iter 120/121 - loss 0.01283307 - time (sec): 7.62 - samples/sec: 3234.37 - lr: 0.000000 - momentum: 0.000000
2023-10-17 10:32:12,195 ----------------------------------------------------------------------------------------------------
2023-10-17 10:32:12,195 EPOCH 10 done: loss 0.0128 - lr: 0.000000
2023-10-17 10:32:12,981 DEV : loss 0.21676737070083618 - f1-score (micro avg)  0.8396
2023-10-17 10:32:12,986 saving best model
2023-10-17 10:32:13,945 ----------------------------------------------------------------------------------------------------
2023-10-17 10:32:13,947 Loading model from best epoch ...
2023-10-17 10:32:15,322 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 10:32:16,199 
Results:
- F-score (micro) 0.8093
- F-score (macro) 0.5585
- Accuracy 0.7005

By class:
              precision    recall  f1-score   support

        pers     0.8207    0.8561    0.8380       139
       scope     0.8248    0.8760    0.8496       129
        work     0.7000    0.7875    0.7412        80
         loc     1.0000    0.2222    0.3636         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7941    0.8250    0.8093       360
   macro avg     0.6691    0.5484    0.5585       360
weighted avg     0.7930    0.8250    0.8018       360

2023-10-17 10:32:16,199 ----------------------------------------------------------------------------------------------------