File size: 23,904 Bytes
326c952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
2023-10-17 11:08:01,482 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:01,483 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 11:08:01,483 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:01,483 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-17 11:08:01,483 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:01,483 Train:  966 sentences
2023-10-17 11:08:01,483         (train_with_dev=False, train_with_test=False)
2023-10-17 11:08:01,483 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:01,483 Training Params:
2023-10-17 11:08:01,483  - learning_rate: "5e-05" 
2023-10-17 11:08:01,483  - mini_batch_size: "8"
2023-10-17 11:08:01,483  - max_epochs: "10"
2023-10-17 11:08:01,483  - shuffle: "True"
2023-10-17 11:08:01,483 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:01,483 Plugins:
2023-10-17 11:08:01,483  - TensorboardLogger
2023-10-17 11:08:01,483  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 11:08:01,483 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:01,483 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 11:08:01,483  - metric: "('micro avg', 'f1-score')"
2023-10-17 11:08:01,483 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:01,483 Computation:
2023-10-17 11:08:01,483  - compute on device: cuda:0
2023-10-17 11:08:01,484  - embedding storage: none
2023-10-17 11:08:01,484 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:01,484 Model training base path: "hmbench-ajmc/fr-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-17 11:08:01,484 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:01,484 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:01,484 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 11:08:02,318 epoch 1 - iter 12/121 - loss 4.64640638 - time (sec): 0.83 - samples/sec: 3140.70 - lr: 0.000005 - momentum: 0.000000
2023-10-17 11:08:03,081 epoch 1 - iter 24/121 - loss 3.99522762 - time (sec): 1.60 - samples/sec: 3122.73 - lr: 0.000010 - momentum: 0.000000
2023-10-17 11:08:03,830 epoch 1 - iter 36/121 - loss 3.16441520 - time (sec): 2.35 - samples/sec: 3155.90 - lr: 0.000014 - momentum: 0.000000
2023-10-17 11:08:04,553 epoch 1 - iter 48/121 - loss 2.57702603 - time (sec): 3.07 - samples/sec: 3184.33 - lr: 0.000019 - momentum: 0.000000
2023-10-17 11:08:05,318 epoch 1 - iter 60/121 - loss 2.14240888 - time (sec): 3.83 - samples/sec: 3232.40 - lr: 0.000024 - momentum: 0.000000
2023-10-17 11:08:06,077 epoch 1 - iter 72/121 - loss 1.85994774 - time (sec): 4.59 - samples/sec: 3241.62 - lr: 0.000029 - momentum: 0.000000
2023-10-17 11:08:06,769 epoch 1 - iter 84/121 - loss 1.66472101 - time (sec): 5.28 - samples/sec: 3253.63 - lr: 0.000034 - momentum: 0.000000
2023-10-17 11:08:07,534 epoch 1 - iter 96/121 - loss 1.50200708 - time (sec): 6.05 - samples/sec: 3245.44 - lr: 0.000039 - momentum: 0.000000
2023-10-17 11:08:08,293 epoch 1 - iter 108/121 - loss 1.35604792 - time (sec): 6.81 - samples/sec: 3266.64 - lr: 0.000044 - momentum: 0.000000
2023-10-17 11:08:09,024 epoch 1 - iter 120/121 - loss 1.25714367 - time (sec): 7.54 - samples/sec: 3268.13 - lr: 0.000049 - momentum: 0.000000
2023-10-17 11:08:09,079 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:09,079 EPOCH 1 done: loss 1.2531 - lr: 0.000049
2023-10-17 11:08:09,987 DEV : loss 0.2125282734632492 - f1-score (micro avg)  0.5735
2023-10-17 11:08:09,994 saving best model
2023-10-17 11:08:10,387 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:11,148 epoch 2 - iter 12/121 - loss 0.21764231 - time (sec): 0.76 - samples/sec: 3515.23 - lr: 0.000049 - momentum: 0.000000
2023-10-17 11:08:11,940 epoch 2 - iter 24/121 - loss 0.21403451 - time (sec): 1.55 - samples/sec: 3305.25 - lr: 0.000049 - momentum: 0.000000
2023-10-17 11:08:12,715 epoch 2 - iter 36/121 - loss 0.20849589 - time (sec): 2.33 - samples/sec: 3163.91 - lr: 0.000048 - momentum: 0.000000
2023-10-17 11:08:13,518 epoch 2 - iter 48/121 - loss 0.21445341 - time (sec): 3.13 - samples/sec: 3181.97 - lr: 0.000048 - momentum: 0.000000
2023-10-17 11:08:14,201 epoch 2 - iter 60/121 - loss 0.21111530 - time (sec): 3.81 - samples/sec: 3192.03 - lr: 0.000047 - momentum: 0.000000
2023-10-17 11:08:14,970 epoch 2 - iter 72/121 - loss 0.20856125 - time (sec): 4.58 - samples/sec: 3197.45 - lr: 0.000047 - momentum: 0.000000
2023-10-17 11:08:15,747 epoch 2 - iter 84/121 - loss 0.20056727 - time (sec): 5.36 - samples/sec: 3229.91 - lr: 0.000046 - momentum: 0.000000
2023-10-17 11:08:16,510 epoch 2 - iter 96/121 - loss 0.19028230 - time (sec): 6.12 - samples/sec: 3241.23 - lr: 0.000046 - momentum: 0.000000
2023-10-17 11:08:17,257 epoch 2 - iter 108/121 - loss 0.18897016 - time (sec): 6.87 - samples/sec: 3246.99 - lr: 0.000045 - momentum: 0.000000
2023-10-17 11:08:18,016 epoch 2 - iter 120/121 - loss 0.18464719 - time (sec): 7.63 - samples/sec: 3230.93 - lr: 0.000045 - momentum: 0.000000
2023-10-17 11:08:18,062 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:18,063 EPOCH 2 done: loss 0.1849 - lr: 0.000045
2023-10-17 11:08:18,872 DEV : loss 0.1422046422958374 - f1-score (micro avg)  0.7617
2023-10-17 11:08:18,878 saving best model
2023-10-17 11:08:19,429 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:20,275 epoch 3 - iter 12/121 - loss 0.10190167 - time (sec): 0.84 - samples/sec: 2692.70 - lr: 0.000044 - momentum: 0.000000
2023-10-17 11:08:21,108 epoch 3 - iter 24/121 - loss 0.10884942 - time (sec): 1.68 - samples/sec: 2845.97 - lr: 0.000043 - momentum: 0.000000
2023-10-17 11:08:21,986 epoch 3 - iter 36/121 - loss 0.10662259 - time (sec): 2.55 - samples/sec: 2876.54 - lr: 0.000043 - momentum: 0.000000
2023-10-17 11:08:22,893 epoch 3 - iter 48/121 - loss 0.10825608 - time (sec): 3.46 - samples/sec: 2835.33 - lr: 0.000042 - momentum: 0.000000
2023-10-17 11:08:23,661 epoch 3 - iter 60/121 - loss 0.11156383 - time (sec): 4.23 - samples/sec: 2893.76 - lr: 0.000042 - momentum: 0.000000
2023-10-17 11:08:24,420 epoch 3 - iter 72/121 - loss 0.11438574 - time (sec): 4.99 - samples/sec: 2921.92 - lr: 0.000041 - momentum: 0.000000
2023-10-17 11:08:25,109 epoch 3 - iter 84/121 - loss 0.11338348 - time (sec): 5.68 - samples/sec: 2963.65 - lr: 0.000041 - momentum: 0.000000
2023-10-17 11:08:25,833 epoch 3 - iter 96/121 - loss 0.10924170 - time (sec): 6.40 - samples/sec: 3006.45 - lr: 0.000040 - momentum: 0.000000
2023-10-17 11:08:26,557 epoch 3 - iter 108/121 - loss 0.10890897 - time (sec): 7.13 - samples/sec: 3068.47 - lr: 0.000040 - momentum: 0.000000
2023-10-17 11:08:27,364 epoch 3 - iter 120/121 - loss 0.10887373 - time (sec): 7.93 - samples/sec: 3095.94 - lr: 0.000039 - momentum: 0.000000
2023-10-17 11:08:27,416 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:27,416 EPOCH 3 done: loss 0.1081 - lr: 0.000039
2023-10-17 11:08:28,182 DEV : loss 0.1380065679550171 - f1-score (micro avg)  0.8312
2023-10-17 11:08:28,187 saving best model
2023-10-17 11:08:28,750 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:29,522 epoch 4 - iter 12/121 - loss 0.07019196 - time (sec): 0.77 - samples/sec: 3201.37 - lr: 0.000038 - momentum: 0.000000
2023-10-17 11:08:30,263 epoch 4 - iter 24/121 - loss 0.08708994 - time (sec): 1.51 - samples/sec: 3150.58 - lr: 0.000038 - momentum: 0.000000
2023-10-17 11:08:31,016 epoch 4 - iter 36/121 - loss 0.07707486 - time (sec): 2.26 - samples/sec: 3236.51 - lr: 0.000037 - momentum: 0.000000
2023-10-17 11:08:31,780 epoch 4 - iter 48/121 - loss 0.08053888 - time (sec): 3.03 - samples/sec: 3197.85 - lr: 0.000037 - momentum: 0.000000
2023-10-17 11:08:32,554 epoch 4 - iter 60/121 - loss 0.07902996 - time (sec): 3.80 - samples/sec: 3187.67 - lr: 0.000036 - momentum: 0.000000
2023-10-17 11:08:33,392 epoch 4 - iter 72/121 - loss 0.07645033 - time (sec): 4.64 - samples/sec: 3185.72 - lr: 0.000036 - momentum: 0.000000
2023-10-17 11:08:34,119 epoch 4 - iter 84/121 - loss 0.07914731 - time (sec): 5.37 - samples/sec: 3177.40 - lr: 0.000035 - momentum: 0.000000
2023-10-17 11:08:34,864 epoch 4 - iter 96/121 - loss 0.08010322 - time (sec): 6.11 - samples/sec: 3219.41 - lr: 0.000035 - momentum: 0.000000
2023-10-17 11:08:35,606 epoch 4 - iter 108/121 - loss 0.07826876 - time (sec): 6.85 - samples/sec: 3227.24 - lr: 0.000034 - momentum: 0.000000
2023-10-17 11:08:36,361 epoch 4 - iter 120/121 - loss 0.07554766 - time (sec): 7.61 - samples/sec: 3226.33 - lr: 0.000034 - momentum: 0.000000
2023-10-17 11:08:36,413 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:36,413 EPOCH 4 done: loss 0.0750 - lr: 0.000034
2023-10-17 11:08:37,162 DEV : loss 0.15543414652347565 - f1-score (micro avg)  0.8178
2023-10-17 11:08:37,167 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:37,826 epoch 5 - iter 12/121 - loss 0.04766896 - time (sec): 0.66 - samples/sec: 3563.90 - lr: 0.000033 - momentum: 0.000000
2023-10-17 11:08:38,573 epoch 5 - iter 24/121 - loss 0.04508118 - time (sec): 1.40 - samples/sec: 3377.50 - lr: 0.000032 - momentum: 0.000000
2023-10-17 11:08:39,321 epoch 5 - iter 36/121 - loss 0.06730774 - time (sec): 2.15 - samples/sec: 3350.74 - lr: 0.000032 - momentum: 0.000000
2023-10-17 11:08:40,116 epoch 5 - iter 48/121 - loss 0.07034756 - time (sec): 2.95 - samples/sec: 3343.74 - lr: 0.000031 - momentum: 0.000000
2023-10-17 11:08:40,891 epoch 5 - iter 60/121 - loss 0.06704156 - time (sec): 3.72 - samples/sec: 3284.32 - lr: 0.000031 - momentum: 0.000000
2023-10-17 11:08:41,677 epoch 5 - iter 72/121 - loss 0.06279205 - time (sec): 4.51 - samples/sec: 3306.89 - lr: 0.000030 - momentum: 0.000000
2023-10-17 11:08:42,381 epoch 5 - iter 84/121 - loss 0.06617666 - time (sec): 5.21 - samples/sec: 3279.85 - lr: 0.000030 - momentum: 0.000000
2023-10-17 11:08:43,202 epoch 5 - iter 96/121 - loss 0.06529293 - time (sec): 6.03 - samples/sec: 3252.32 - lr: 0.000029 - momentum: 0.000000
2023-10-17 11:08:43,941 epoch 5 - iter 108/121 - loss 0.06344772 - time (sec): 6.77 - samples/sec: 3268.41 - lr: 0.000029 - momentum: 0.000000
2023-10-17 11:08:44,647 epoch 5 - iter 120/121 - loss 0.06037539 - time (sec): 7.48 - samples/sec: 3285.74 - lr: 0.000028 - momentum: 0.000000
2023-10-17 11:08:44,701 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:44,701 EPOCH 5 done: loss 0.0600 - lr: 0.000028
2023-10-17 11:08:45,476 DEV : loss 0.16548091173171997 - f1-score (micro avg)  0.8331
2023-10-17 11:08:45,481 saving best model
2023-10-17 11:08:46,020 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:46,755 epoch 6 - iter 12/121 - loss 0.03259283 - time (sec): 0.73 - samples/sec: 3292.80 - lr: 0.000027 - momentum: 0.000000
2023-10-17 11:08:47,480 epoch 6 - iter 24/121 - loss 0.03577944 - time (sec): 1.46 - samples/sec: 3333.04 - lr: 0.000027 - momentum: 0.000000
2023-10-17 11:08:48,318 epoch 6 - iter 36/121 - loss 0.03375939 - time (sec): 2.29 - samples/sec: 3286.49 - lr: 0.000026 - momentum: 0.000000
2023-10-17 11:08:49,095 epoch 6 - iter 48/121 - loss 0.03529970 - time (sec): 3.07 - samples/sec: 3239.23 - lr: 0.000026 - momentum: 0.000000
2023-10-17 11:08:49,861 epoch 6 - iter 60/121 - loss 0.03304757 - time (sec): 3.84 - samples/sec: 3201.69 - lr: 0.000025 - momentum: 0.000000
2023-10-17 11:08:50,619 epoch 6 - iter 72/121 - loss 0.03748447 - time (sec): 4.60 - samples/sec: 3193.26 - lr: 0.000025 - momentum: 0.000000
2023-10-17 11:08:51,383 epoch 6 - iter 84/121 - loss 0.03924613 - time (sec): 5.36 - samples/sec: 3226.65 - lr: 0.000024 - momentum: 0.000000
2023-10-17 11:08:52,169 epoch 6 - iter 96/121 - loss 0.03747713 - time (sec): 6.14 - samples/sec: 3243.99 - lr: 0.000024 - momentum: 0.000000
2023-10-17 11:08:52,902 epoch 6 - iter 108/121 - loss 0.03732658 - time (sec): 6.88 - samples/sec: 3240.78 - lr: 0.000023 - momentum: 0.000000
2023-10-17 11:08:53,620 epoch 6 - iter 120/121 - loss 0.03850823 - time (sec): 7.60 - samples/sec: 3240.53 - lr: 0.000022 - momentum: 0.000000
2023-10-17 11:08:53,667 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:53,667 EPOCH 6 done: loss 0.0383 - lr: 0.000022
2023-10-17 11:08:54,432 DEV : loss 0.19360701739788055 - f1-score (micro avg)  0.8263
2023-10-17 11:08:54,437 ----------------------------------------------------------------------------------------------------
2023-10-17 11:08:55,126 epoch 7 - iter 12/121 - loss 0.05617147 - time (sec): 0.69 - samples/sec: 3192.31 - lr: 0.000022 - momentum: 0.000000
2023-10-17 11:08:55,900 epoch 7 - iter 24/121 - loss 0.04013345 - time (sec): 1.46 - samples/sec: 3077.29 - lr: 0.000021 - momentum: 0.000000
2023-10-17 11:08:56,654 epoch 7 - iter 36/121 - loss 0.03935435 - time (sec): 2.22 - samples/sec: 3213.72 - lr: 0.000021 - momentum: 0.000000
2023-10-17 11:08:57,417 epoch 7 - iter 48/121 - loss 0.03899974 - time (sec): 2.98 - samples/sec: 3237.49 - lr: 0.000020 - momentum: 0.000000
2023-10-17 11:08:58,156 epoch 7 - iter 60/121 - loss 0.03729358 - time (sec): 3.72 - samples/sec: 3253.20 - lr: 0.000020 - momentum: 0.000000
2023-10-17 11:08:58,955 epoch 7 - iter 72/121 - loss 0.03709520 - time (sec): 4.52 - samples/sec: 3304.23 - lr: 0.000019 - momentum: 0.000000
2023-10-17 11:08:59,758 epoch 7 - iter 84/121 - loss 0.03509845 - time (sec): 5.32 - samples/sec: 3294.34 - lr: 0.000019 - momentum: 0.000000
2023-10-17 11:09:00,540 epoch 7 - iter 96/121 - loss 0.03302967 - time (sec): 6.10 - samples/sec: 3281.68 - lr: 0.000018 - momentum: 0.000000
2023-10-17 11:09:01,317 epoch 7 - iter 108/121 - loss 0.03142229 - time (sec): 6.88 - samples/sec: 3253.78 - lr: 0.000017 - momentum: 0.000000
2023-10-17 11:09:02,084 epoch 7 - iter 120/121 - loss 0.03049685 - time (sec): 7.65 - samples/sec: 3219.99 - lr: 0.000017 - momentum: 0.000000
2023-10-17 11:09:02,130 ----------------------------------------------------------------------------------------------------
2023-10-17 11:09:02,130 EPOCH 7 done: loss 0.0306 - lr: 0.000017
2023-10-17 11:09:02,900 DEV : loss 0.1948603093624115 - f1-score (micro avg)  0.8331
2023-10-17 11:09:02,905 ----------------------------------------------------------------------------------------------------
2023-10-17 11:09:03,630 epoch 8 - iter 12/121 - loss 0.01798295 - time (sec): 0.72 - samples/sec: 3173.02 - lr: 0.000016 - momentum: 0.000000
2023-10-17 11:09:04,365 epoch 8 - iter 24/121 - loss 0.01653155 - time (sec): 1.46 - samples/sec: 3229.96 - lr: 0.000016 - momentum: 0.000000
2023-10-17 11:09:05,147 epoch 8 - iter 36/121 - loss 0.02239749 - time (sec): 2.24 - samples/sec: 3246.69 - lr: 0.000015 - momentum: 0.000000
2023-10-17 11:09:05,835 epoch 8 - iter 48/121 - loss 0.02224355 - time (sec): 2.93 - samples/sec: 3179.90 - lr: 0.000015 - momentum: 0.000000
2023-10-17 11:09:06,568 epoch 8 - iter 60/121 - loss 0.02209139 - time (sec): 3.66 - samples/sec: 3271.64 - lr: 0.000014 - momentum: 0.000000
2023-10-17 11:09:07,344 epoch 8 - iter 72/121 - loss 0.02267916 - time (sec): 4.44 - samples/sec: 3268.05 - lr: 0.000014 - momentum: 0.000000
2023-10-17 11:09:08,155 epoch 8 - iter 84/121 - loss 0.02026633 - time (sec): 5.25 - samples/sec: 3227.66 - lr: 0.000013 - momentum: 0.000000
2023-10-17 11:09:08,924 epoch 8 - iter 96/121 - loss 0.02139598 - time (sec): 6.02 - samples/sec: 3241.90 - lr: 0.000013 - momentum: 0.000000
2023-10-17 11:09:09,703 epoch 8 - iter 108/121 - loss 0.02001586 - time (sec): 6.80 - samples/sec: 3249.84 - lr: 0.000012 - momentum: 0.000000
2023-10-17 11:09:10,428 epoch 8 - iter 120/121 - loss 0.02118325 - time (sec): 7.52 - samples/sec: 3270.15 - lr: 0.000011 - momentum: 0.000000
2023-10-17 11:09:10,476 ----------------------------------------------------------------------------------------------------
2023-10-17 11:09:10,477 EPOCH 8 done: loss 0.0215 - lr: 0.000011
2023-10-17 11:09:11,407 DEV : loss 0.21927376091480255 - f1-score (micro avg)  0.8323
2023-10-17 11:09:11,412 ----------------------------------------------------------------------------------------------------
2023-10-17 11:09:12,122 epoch 9 - iter 12/121 - loss 0.02132408 - time (sec): 0.71 - samples/sec: 3315.28 - lr: 0.000011 - momentum: 0.000000
2023-10-17 11:09:12,847 epoch 9 - iter 24/121 - loss 0.01773470 - time (sec): 1.43 - samples/sec: 3278.97 - lr: 0.000010 - momentum: 0.000000
2023-10-17 11:09:13,566 epoch 9 - iter 36/121 - loss 0.02313221 - time (sec): 2.15 - samples/sec: 3188.50 - lr: 0.000010 - momentum: 0.000000
2023-10-17 11:09:14,319 epoch 9 - iter 48/121 - loss 0.01886954 - time (sec): 2.91 - samples/sec: 3251.85 - lr: 0.000009 - momentum: 0.000000
2023-10-17 11:09:15,023 epoch 9 - iter 60/121 - loss 0.01968467 - time (sec): 3.61 - samples/sec: 3228.26 - lr: 0.000009 - momentum: 0.000000
2023-10-17 11:09:15,732 epoch 9 - iter 72/121 - loss 0.02178143 - time (sec): 4.32 - samples/sec: 3249.54 - lr: 0.000008 - momentum: 0.000000
2023-10-17 11:09:16,520 epoch 9 - iter 84/121 - loss 0.02212080 - time (sec): 5.11 - samples/sec: 3265.04 - lr: 0.000008 - momentum: 0.000000
2023-10-17 11:09:17,344 epoch 9 - iter 96/121 - loss 0.02053703 - time (sec): 5.93 - samples/sec: 3266.72 - lr: 0.000007 - momentum: 0.000000
2023-10-17 11:09:18,120 epoch 9 - iter 108/121 - loss 0.01868999 - time (sec): 6.71 - samples/sec: 3277.35 - lr: 0.000006 - momentum: 0.000000
2023-10-17 11:09:18,877 epoch 9 - iter 120/121 - loss 0.01827614 - time (sec): 7.46 - samples/sec: 3284.29 - lr: 0.000006 - momentum: 0.000000
2023-10-17 11:09:18,939 ----------------------------------------------------------------------------------------------------
2023-10-17 11:09:18,939 EPOCH 9 done: loss 0.0183 - lr: 0.000006
2023-10-17 11:09:19,740 DEV : loss 0.22246934473514557 - f1-score (micro avg)  0.8319
2023-10-17 11:09:19,747 ----------------------------------------------------------------------------------------------------
2023-10-17 11:09:20,492 epoch 10 - iter 12/121 - loss 0.00591043 - time (sec): 0.74 - samples/sec: 3213.24 - lr: 0.000005 - momentum: 0.000000
2023-10-17 11:09:21,241 epoch 10 - iter 24/121 - loss 0.01457823 - time (sec): 1.49 - samples/sec: 3338.82 - lr: 0.000005 - momentum: 0.000000
2023-10-17 11:09:22,020 epoch 10 - iter 36/121 - loss 0.01630667 - time (sec): 2.27 - samples/sec: 3205.55 - lr: 0.000004 - momentum: 0.000000
2023-10-17 11:09:22,738 epoch 10 - iter 48/121 - loss 0.02028258 - time (sec): 2.99 - samples/sec: 3259.08 - lr: 0.000004 - momentum: 0.000000
2023-10-17 11:09:23,503 epoch 10 - iter 60/121 - loss 0.01793374 - time (sec): 3.76 - samples/sec: 3264.73 - lr: 0.000003 - momentum: 0.000000
2023-10-17 11:09:24,276 epoch 10 - iter 72/121 - loss 0.01632167 - time (sec): 4.53 - samples/sec: 3244.65 - lr: 0.000003 - momentum: 0.000000
2023-10-17 11:09:25,096 epoch 10 - iter 84/121 - loss 0.01470658 - time (sec): 5.35 - samples/sec: 3185.43 - lr: 0.000002 - momentum: 0.000000
2023-10-17 11:09:25,921 epoch 10 - iter 96/121 - loss 0.01418145 - time (sec): 6.17 - samples/sec: 3171.54 - lr: 0.000001 - momentum: 0.000000
2023-10-17 11:09:26,658 epoch 10 - iter 108/121 - loss 0.01327139 - time (sec): 6.91 - samples/sec: 3204.74 - lr: 0.000001 - momentum: 0.000000
2023-10-17 11:09:27,373 epoch 10 - iter 120/121 - loss 0.01330474 - time (sec): 7.62 - samples/sec: 3225.61 - lr: 0.000000 - momentum: 0.000000
2023-10-17 11:09:27,427 ----------------------------------------------------------------------------------------------------
2023-10-17 11:09:27,427 EPOCH 10 done: loss 0.0132 - lr: 0.000000
2023-10-17 11:09:28,181 DEV : loss 0.22670365869998932 - f1-score (micro avg)  0.8413
2023-10-17 11:09:28,186 saving best model
2023-10-17 11:09:29,078 ----------------------------------------------------------------------------------------------------
2023-10-17 11:09:29,079 Loading model from best epoch ...
2023-10-17 11:09:30,511 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 11:09:31,188 
Results:
- F-score (micro) 0.8092
- F-score (macro) 0.5501
- Accuracy 0.6986

By class:
              precision    recall  f1-score   support

        pers     0.8652    0.8777    0.8714       139
       scope     0.8085    0.8837    0.8444       129
        work     0.6489    0.7625    0.7011        80
         loc     0.6667    0.2222    0.3333         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7889    0.8306    0.8092       360
   macro avg     0.5979    0.5492    0.5501       360
weighted avg     0.7847    0.8306    0.8032       360

2023-10-17 11:09:31,188 ----------------------------------------------------------------------------------------------------